

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

Accelerating Science by Repurposing Machine Learning Software

Bojan Nikolic, Vladislav Stolyarov

3nd ASTERICS-OBELICS Workshop

23-25 October 2018, Cambridge, UK.

Machine Learning Setting

Goals

What can ML software offer?

What can ML software offer -- example

Acceleration		NUMA		Non-Uniform Interconnect		Distributed Memory Cluster Scaling	
High Input Data Throughput		High Quality Programming Interfaces		Automatic Differentiation		Task Segmentation	
	Working Memory Management		Efficient large scale minimisers		+++		

Example: Non-Linear Function minimisation

Find:

argmin
$$f(\vec{x})$$
 $f(\vec{x})$ single valued

Example algorithms: Nelder-Mead downhill simplex, gradient descent, Broyden Fletcher Goldfarb Shanno (BFGS), MCMC etc. Function gradient often used

ASTERICS-OBELICS WORKSHOP 2018 / CAMBRIDGE

October 23, 2018

function

Focus on function and gradient evaluation

How to calculate: f(x) and $\nabla f(x) = \frac{\partial f}{\partial x_i}$ quickly & easily

- Best results for f(x) that takes lots of data, uses arrays and has few iterations
- Will say nothing about the minimisation algorithms themselves!
- Useful for function minimisation/maximisation but presumably in other areas too

Machine Learning as Function Minimisation

- $\mathcal{D}_{\text{train}} : \{(X_i, \widehat{Y}_i)\}, \text{ the training data set}$ $M(X; \Theta) \to Y : \text{Predictor}$
- X : An observation (e.g., pixelated image)
- *Y* : Prediction/classification/etc
- Θ : Predictor parameters (to be learned) e.g., weights, biases of a neural network

$$\mathcal{L}(\Theta; M, \mathcal{D}_{\text{train}}) = \sum_{i} L\left(\widehat{Y}_{i} - M(X; \Theta)\right)$$
: The total "loss" function

L : individual loss function, could be L1, L2 or something more tailored

"Learning" is (approximately) minimising \mathcal{L} with respect to Θ

How? (With PyTorch)

Acceleration

- Fast, efficient, high-throughput computation
- Using GPUs (or multithreaded CPUs)

Automatic Differentiation

 Efficient computation of gradients of functions with many parameters NumPy-like Interface

- Standard imperative semantics, in standard Python
- Familiar to most scientists
- Right abstraction level (APL)

Why (what is) acceleration ?

Intel 8087 (Wikipedia, by Rautakorbi)

Intel Xeon Broadwell E5 V4 – 7 billion transistors 3[0]; ;ions[1]) $\operatorname{nns}[1];$ ++) (array->data + i*array A simple, single bubl threaded-program will "retire" ~1-2 floating point instructions / cycle on both

GPU Acceleration

- Multi-core
 - MIMD(MAMT)

- Short-vector SIMD
 SIMD(SAST)
- GPU
 \$ SI(MDSA)MT

From very nice slide deck by Sylvain Collange (2011)

Automatic Differentiation

$$h = H(x) \qquad f = F(G(H(x)))$$
$$g = G(h) \qquad h_0 = H(x_0)$$
$$f = F(g) \qquad g_0 = G(h_0)$$

$$\xrightarrow{x} H \xrightarrow{h} G \xrightarrow{g} F \xrightarrow{f}$$

Symbolic Differentiation

•
$$\left. \frac{df}{dx} \right|_{x_0} = \left(\frac{dF}{dg} \frac{dG}{dh} \frac{dH}{dx} \right) \right|_{x_0}$$

Automatic differentiation

•
$$\left. \frac{df}{dx} \right|_{x_0} = \left. \frac{dF}{dg} \right|_{g_0} \left. \frac{dG}{dh} \right|_{h_0} \left. \frac{dH}{dx} \right|_{x_0}$$

Reverse-Mode Automatic Differentiation

$$h = H(x, y)$$
$$g = G(x, y)$$
$$f = F(h, g)$$

Reverse-Mode Automatic Differentiation

Why reverse?

$$h = H(x, y)$$
$$g = G(x, y)$$
$$f = F(h, g)$$

Need to evaluate gradient in reverse order compared to program flow

Ease of use: NumPy-like

The languages which were used to guide the development of NumPy include the *infamous APL* family of languages, Basis, MATLAB, FORTRAN, S and S+, and others. Numerical Python, Ascher et al, Sept 2001, LANL

Write numerical programs in a way which is easy to think about:

• Benefits both the human user <u>and</u> the language compiler

Notation as a Tool of Thought

1979

Turing

Award

Lecture

KENNETH E. IVERSON IBM Thomas J. Watson Research Center

ASTERICS-OBELICS WORKSHOP 2018 / CAMBRIDGE

October 23, 2018

Or PyTorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration

Installation:

conda install pytorch cuda91 –c pytorch

Automatic differentiation among other features Trivially easy to offload to GPUs (PyTorch 0.3.0 supports old GPUs like GeForce 6xx) OS: Windows/Linux/Mac Python version: 2.7, 3.5 – 3.7 CUDA version: 8.0 – 9.2 Installer: PIP, Conda, source C++/LibTorch version See https://pytorch.org/ for details, tutorial, etc .

NumPy Contributions

Plot on GitHub of contribution frequency over lifetime of the project

NumPy is the main workhorse of numerical data analysis in Python. It is evolution of a library starting in 1996 (numeric, numarrays, etc)

PyTorch Contributions

Plot on GitHub of contribution frequency over lifetime of the project

Contributions to master, excluding merge commits

Not usually seen in community-led sw

ASTERICS-OBELICS WORKSHOP 2018 / CAMBRIDGE

Example application

"OUT-OF-FOCUS" (OOF) HOLOGRAPHY

"Out-of-focus" (OOF) Holography

Roughly the radio equivalent of optical "active optics"

- A technique to measure the shape of single-dish radio telescope from observations of astronomical sources
 - In "near-real-time" use at the GBT 100m
- An inverse problem adequately solved by local maximum likelihood solution
- Similar problems at optical wavelengths, in electron microscopy, etc.
- See https://www.mrao.cam.ac.uk/~bn204/oof/index.html

Likelihood function

TRADITIONAL

$$P(y|\hat{y}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(y-\hat{y})^2}{2\sigma^2}}$$

Likelihood for a set of observations

 $P(\{y_i\}) = \prod_i P(y_i|\hat{y}_i)$

Log-likelihood is equivalent to **least-squares** problem

<u>Not efficient</u> to reduce likelihood to a single valued function!

"ROBUST"

E.g. Cauchy distribution:

$$P(y|\hat{y}) = \frac{1}{\pi\gamma} \frac{\gamma^2}{(y-\hat{y})^2 + \gamma^2}$$

Captures the possibility of outliers (glitches in read-out, short term pointing instability in telescope, atmospheric disturbance)

Log-likelihood **does not** factor into least-squares

Porting to PyTorch

- Most NumPy operations are supported by PyTorch arrays
 - Missing ops easily implemented
- Array slicing etc works in the same way
- Normal "imperative" Python semantics
- Only performance critical code needs to be ported
 - Zero-overhead sharing of data between PyTorch and NumPy arrays, so incremental porting very easy and efficient
- Can use standard Python/Numpy/Scipy optimisers

NumPy vs PyTorch code comparison

```
PyTorch:
```

```
import torch as T
def hypot(x, y):
    return T.sqrt(x**2 + y**2)
```


NumPy:

Performance comparison

Why?

- 300x speed-up brings new possibilities (~1 year -> 1 day):
 - More complex models
 - More data
 - Difficult fn's (e.g., near-field diffraction)
 - Realistic maximum likelihood statistics that take into account telescope errors
- New regime: <u>real-time</u> maximum-likelihood or maximum-aposteriori solutions:
 - 5 minutes > 1 second
 - Human in the loop and control system applications

>100x performance improvement in minimising functions

Small, contained, software effort needed

• Perfect integration with standard Python environment

Out-of-box support for GPUs and multi-threaded CPUs

Easy to use (& install!)

More details: arXiv:1805.07439

Acknowledgement

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

October 23, 2018