

Astronomy ESFRI & Research Infrastructure Cluster ASTERICS - 653477

3nd ASTERICS-OBELICS Workshop

23-25 October 2018, Cambridge, UK.

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

Astronomy ESFRI & Research Infrastructure Cluster ASTERICS - 653477

Acknowledgement

• H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

DNN classification of signals and glitches in time-domain gravitational-wave data

Michał Bejger on behalf of Eric Chassande-Mottin & Agata Trovato (APC group)

23.10.18

Gravitational-wave astronomy

5 binary black hole mergers and 1 binary neutron star merger detected so far!

Glitches representation

- Studies to apply machine learning to the problem of the glitch identification are mainly based on spectrograms (GravitySpy, DeepLearning,..)
 - ✓ Deep-learning performs well on images
 - Disadvantages:
 - Volume of data (big images)
 - Spectrogram parameters/choice dependent
 - Risk of loosing information due to manipulation
 - Deep learning algorithms learn on raw data
- Time series representation
 - ✓ full information
 - Reduced volume of data

Time (s

General ideas

- Study, identify and reduce the <u>transient noise</u> present in the gravitational wave detectors through <u>deep learning techniques</u>
 - Raw <u>time-series</u> as input instead of frequency-time representations (spectrograms)
 - Both strain data and auxiliary channels
 - Try different kind of deep-learning algorithms
- Final goal: analyse single-detector data

Single-detector time

- Transient noise (behaviour of the instruments or complex interactions between the instruments and their environment)
 - ✓ "instrumental glitches", non-Gaussian short duration artefacts
 - ✓ mimic the gravitational wave signal.
- Current pipelines: signal has to appear in coincidence in two or more detectors
 - \checkmark distinguish true astrophysical signals from the transient noise
 - highly reduces the number of false positives allowing to detect gravitational waves with very high statistical confidence.

Single-detector time marginally exploited

2.7 months in O1+O2 => could contain 3 events

Glitches, noises and signals

Current activity

- First step: prepare samples for the training and test
 - Training on the basis of the strain morphology

Generator of 3 classes of events only:

- Detector noise without loud glitches (Gaussian-noise)
 - Taken from real data when nor glitches nor signals are present
- Gaussian-noise + glitches
 - Glitches occurring times taken from cWB analysis
- Gaussian-noise + astrophysical signals
 - Signals = BBH with randomised parameter

Generator able to produce each of the 3 classes selecting randomly a piece of random noise and, if needed, adding randomly glitches or signals

 \checkmark Data whitened and accompanied by the PSD to calculate the SNR

Ongoing / next steps

- ★ setup a 1D Convolutional Neural Network (CNN) to distinguish the 3 classes of events,
- try other algorithms: recurrent neural networks (RNN), Long-Short Term Memory (LSTM),
- ★ Add features:
 - * environmental channels (multi-instance learning),
 - * more complicated signal/glitch morphologies,
 - * study causality (not only corelation) between channels,
 - * Compression to decrease the size of DNN (e.g. Bayesian compression, arXiv:1705.08665).

RNN - LSTM

Neural networks for processing sequential data

- Keep a summary of the past sequence in their memory or so-called hidden state, which is updated whenever a new input token is presented.
- LSTMs incorporate a gating mechanism which controls to what extent the new input is stored in memory and the old memory is forgotten.

Environmental channels

Hundreds of thousands auxiliary data streams, auxiliary channels, monitors status of the detector (e.g, state of the control loops) and of its physical environment.

Now: correlation-based techniques used to identify the coupling of a noise source with an observed disturbance

- ✓ UPV and Excavator: based on time coincidence only (Virgo)
- Weak points: need many (100) glitches to find correlation
- ✓ Fail to find long-duration (> few sec) glitches because those are always in coincidence with something happening in the witness channels

Deep-learning algorithms: in principle able to learn and evidence non-linear couplings