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Inference in cosmology: parameter estimation

I Cosmologists infer universe
parameters from data

I Bayesian framework: Use
probability distributions to
quantify errors

I Inferences depend on
models (ΛCDM)

I arXiv:1807.06209
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Inference in cosmology: model comparison

I Green model includes
curvature (cΛCDM)

I Age and size now correlated

I Measurement less precise

I Flat is better with 2:1 odds
against curvature
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Motivating example: Fitting a line to data

I We have noisy data D

I We wish to fit a model M

I Functional form
y = fM(x ; θ)

I For example:

flinear(x ; θ) = ax + b

fquadratic(x ; θ) = ax2 + b

I Model parameters
θ = (a, b)
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χ2 best-fit
Fitting lines to data

I For each parameter set θ:

χ2(θ) =
∑
i

|yi − f (xi ; θ)|2

I Minimise χ2 wrt θ
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χ2 with non-uniform data errors
Fitting lines to data

I If data have non-uniform
errors:

χ2(θ) =
∑
i

|yi − f (xi ; θ)|2
σ2
i
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Problems with χ2

Fitting lines to data

I Why square the errors? –
could take absolute:

ψ2(θ) =
∑
i

|yi − f (xi ; θ)|
σi

I How do we differentiate
between models, e.g.
quadratic vs curved
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Probability distributions
Fitting lines to data

I The probability of observing a datum:

P(yi |θ,M) =
1√

2πσi
exp

(
−|yi − f (xi ; θ)|2

2σ2
i

)
I The probability of observing the data:

P(D|θ,M) =
∏
i

1√
2πσi

exp

(
−|yi − f (xi ; θ)|2

2σ2
i

)
=

1∏
i

√
2πσi

exp
∑
i

−|yi − f (xi ; θ)|2
2σ2

i

∝ e−χ
2(θ)/2
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Maximum likelihood
Fitting lines to data
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I Minimising χ2(θ) is
equivalent to maximising
P(D|θ,M) ∝ e−χ

2(θ)/2

I P(D|θ,M) is called the
Likelihood L = L(θ) of the
parameters θ

I “Least squares” ≡
“maximum likelihood”
(if data are gaussian).

I arXiv:1809.04598
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Bayesian inference

I Likelihood L = P(D|θ,M) is undeniably correct.

I Frequentists construct inference techniques purely from this function.

I The trend is cosmology is to work with a Bayesian approach.

I What we want are things like P(θ|D,M) and P(M|D).

I To invert the conditionals, we need Bayes theorem:

P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)

P(M|D) =
P(D|M)P(M)

P(D)
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Terminology
Bayesian inference

P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)

Posterior =
Likelihood× Prior

Evidence

P(M|D) =
P(D|M)P(M)

P(D)

Model probability =
Evidence×Model Prior

Normalisation
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The prior
Example: Biased coins

I Need to define the Prior P(θ) — probability of the bias, given no data

I Represents our knowledge of parameters before the data – subjective

I Frequentists view this as a flaw in Bayesian inference.

I Bayesians view this as an advantage

I Fundamental rule of Inference:

You cannot extract information from data
without making assumptions

I All Bayesians do is make them explicit

I Any method that claims it is “objective” is simply hiding them
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Parameter estimation
Bayesian inference

I We may use
P(θ|D,M) to
inspect whether a
model looks
reasonable
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Predictive posterior

More useful to
plot:

P(y |x) =∫
P(y |x , θ)P(θ)dθ

(all conditioned
on D,M)
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Model comparison
Bayesian inference

I We may use the
Bayesian evidence Z to
determine whether a
model is reasonable.

I Z = P(D|M) =∫
P(D|M, θ)P(θ|M)dθ

I The evidence
quantifies Occam’s
razor, penalising
over-fitted models with
too many parameters.

I Normally assume
uniform model priors
Z ∝ P(M|D)P(M).
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Line fitting (context)

I Whilst this model seems a little
trite. . .

I . . . determining polynomial indices
≡ determining cosmological
material content:
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Quantifying error with Probability

I As scientists, we are used to seeing
error bars on results.

I Masses of LIGO GW150914 binary
merger:

m1 = 39.4+5.5
−4.9 M�

m2 = 30.9+4.8
−4.4 M�

I These are called credible intervals,
state that we are e.g. 90%
confident of the value lying in this
range.

I More importantly, these are
summary statistics.
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Sampling
How to describe a high-dimensional posterior

I In high dimensions,
posterior P occupies a
vanishingly small region of
the prior π.

I Gridding is doomed to
failure for D & 4.

I Sampling the posterior is
an excellent compression
scheme.

I Name of the game:
Constructing algorithms to
generate samples with a
minimum number of
likelihood calls
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Sampling algorithms: Metropolis Hastings

I Turn the N-dimensional problem into a one-dimensional one.

1. Propose random step to new point xi → xi+1

2. If uphill [P(xi+1) > P(xi )], make step. . .
3. . . . otherwise make step with probability ∝ P(xi+1)/P(xi ).

I Theorem: set of steps {xi : i = 1 . . .N} are samples from posterior P

I chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,banana
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Hamiltonian Monte-Carlo

I Key idea: Treat log L(Θ) as a potential energy

I Guide walker under force:

F (Θ) = ∇ log L(Θ)

I Walker is naturally guided uphill

I Conserved quantities mean efficient acceptance ratios.

I Allows sampling in millions of dimensions.

I stan is a fully fledged probabilistic programming language for HMC
(10.18637/jss.v076.i01).

I chi-feng.github.io/mcmc-demo/app.html#HamiltonianMC,donut

wh260@cam.ac.uk 21 / 25

https://www.jstatsoft.org/article/view/v076i01
https://chi-feng.github.io/mcmc-demo/app.html#HamiltonianMC,donut


Ensemble sampling

I Instead of one walker, evolve a set of n walkers.

I Can use information present in ensemble to guide proposals.

I emcee: affine invariant proposals arXiv:1202.3665

I chi-feng.github.io/mcmc-demo/app.html#SVGD,banana
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Nested Sampling
John Skilling’s alternative to traditional MCMC

I Uses ensemble sampling to compress prior to posterior.

I Allows you to compute evidences, partition functions and
Kullback-Liebler divergences.

New procedure:
Maintain a set S of n samples, which are sequentially updated:

S0: Generate n samples uniformly over the space .

Sn+1: Delete the lowest probability sample in Sn, and replace it
with a new sample with higher probability

Requires one to be able to uniformly within a region, subject to a hard
probability constraint.

MultiNest Rejection sampling D < 20 (arXiv:0809.3437)

PolyChord Slice sampling D . 1000 (arXiv:1506.00171)
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Sampling algorithms: summary

Metropolis Hastings Easy to implement, requires manual tuning
& insight into the problem

emcee Fire-and-forget, easy python implementation

Hamiltonian Monte Carlo Allows sampling in extremely high
dimensions, requires gradients, self-tuning.
Need to learn stan programming language.

Nested Sampling Allows evidence calculation in moderately
high dimensions, self-tuning. Need to install
MultiNest and/or PolyChord packages.
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Further Reading

I Data Analysis: A Bayesian Tutorial (Sivia & Skilling)

I Information theory, inference & learning algorithms (MacKay)

I Bayesian methods in cosmology arXiv.org:0803.4089

I Bayesian sparse reconstruction arXiv:1809.04598

I Hamiltonian monte carlo arXiv:1701.02434

I Nested sampling euclid.ba/1340370944
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