

C. Ferrari

on behalf of the SKA Extragalactic Continuum SWG

The Extragalactic Continuum SWG

 ~110 scientists (15 core group) from 20+ countries (SWG chairs: N. Hurley-Walker, M. Sargent)

Full list: https://astronomers.skatelescope.org/science-working-groups/galaxy-evolution-continuum

- 5 scientific focus groups:
 - A. Star formation history of the Universe (coordinators: M. Jarvis, M. Sargent)
 - B. Active Galactic Nuclei and Their Role in Galaxy Evolution (coordinators: I. Prandoni, D. V. Lal)
 - C. Galaxy Clusters and Large Scale Structure (coordinators: R. Cassano, C. Ferrari)
 - D. Detailed Astrophysics of Star Formation and Accretion in Local Galaxies (coordinators: A. Alberdi, R. Beswick)
 - E. Strong Lensing (coordinator: J. McKean)
- 3 technical focus groups:
 - F. Simulations (coordinator: A. Bonaldi)
 - G. Source Extraction & Characterisation
 - H. SKA1-LOW Data Analysis & Calibration

Vacancies/potential new roles

- SDP contact
- Commensality champion?
- SRC champion?

Slide courtesy: M. Sargent

An exquisite instrument for surveying the sky

Prandoni & Seymour 2015

Continuum Surveys within SKA HPSO

		y Science Number		Frequency	Observing Area		Integration		НРС					
Science Objective	High Priorit		Mode	Range Low - High	Total Area	Angular Resolution Min:Max	Total (hr)	Per Pointing	B_Max (km)	sub-bands	Depth	PFlops	Fraction'	PF*Frac'
EoR - Imaging AASKA14:001	CD/EoR	1	Imaging	50 - 200 MHz	100 deg2	10:1000 arcsec	5000	2000 hr	65/40	Low 1-4	xl	648/ 336	0.156	101/52
EoR - Power Spectra	CD/EoR	2	imaging/Power Spectrum	50 - 200 MHz	1000 deg2	10:1000 arcsec	5000	200 hr	65/40	Low 1-4	Ι	231/113	0.156	36/18
AASKA14:001			imaging/Power Spectrum	50 - 200 MHz	10000 deg2	10:1000 arcsec	5000	20 hr	65/40	Low 1-4	m/l	175/88	0.156	28/14
	Pulsars	4	Non-Imaging	150 - 350 MHz	30000 deg2	320 arcsec	12750	40 mn	1	Low 4-6	s/m	1	0.398	0.40
Pulsar Searching AASKA14:040			Non-Imaging	650 - 950 MHz	2400 deg2	105 arcsec	800	10 mn	1	Mid 3	S	1	0.009	0.01
			Non-Imaging	1250 - 1550 MHz	2400 deg2	60 arcsec	2400	10 mn	1	Mid 5	S	1	0.028	0.03
Pulsar Timing	Pulsars	5	Non-Imaging	150 - 350 MHz	0.9 arcmin2	8 arcsec	4300	40 mn	1	Low 4-6	s/m	1	0.134	0.13
AASKA14:037			Non-Imaging	950 - 1760 MHz	0.7 arcmin2	7 arcsec	1600	15 mn	1	Mid 4-5	S	1	0.019	0.02
HI - High z AASKA14:128	HI	13	Imaging	790 - 950 MHz	5.4 deg2	3:5 arcsec	5000	1000 hr	50	Mid 3	xl	247	0.058	14.29
HI - Low z AASKA14:129	HI	14	Imaging	1300 - 1400 MHz	3.8 deg2	3:5 arcsec	2000	200 hr	50	Mid 5	Ι	63	0.023	1.46
HI - Galaxy AASKA14:130	HI	15	Imaging	1415 - 1425 MHz	1080 deg2	5:60 arcsec	12600	4.4 hr	50	Mid 5	m	17	0.146	2.48
Transients - FRB AASKA14:055	Transients	18	Non-imaging/ Commensal	650 - 950 MHz	30000 deg2	105 arcsec	10000	2 msec	1/150	Mid 3	S	36	0.116	4.17
CoL - Planet formation AASKA14:117	Cradle of Life	22	Imaging	8 - 12 GHz	0.05 deg2	0.04:1 arcsec	6000	600 hr	150	Mid 11-12	xl	42	0.069	2.92
Magnetism - RM-grid AASKA14:092	Magnetism	27	Imaging	1000 - 1700 MHz	31000 deg2	2 arcsec	10000	7.4 mn	100	Mid 4 -5	S	59	0.116	6.83
Cosmology - High z IM AASKA14:019	Cosmology	32	Auto-Correl/ Commensal	350 - 1050 MHz	30000 deg2	1.7 deg	10000	2.2 hr @ 190 Dishes	1/50	Mid 1-3	m	98	0.116	11.34
Cosmology - ISW, Dipole AASKA14:018, 032	Cosmology	33	Imaging	1000 - 1700 MHz	31000 deg2	2 arcsec	10000	7.4 mn	100	Mid 4-5	S	59	0.116	6.83
			Imaging	1000 - 1700 MHz	1000 deg2	0.5:1 arcsec	10000	3.8 hr	150	Mid 4-5	m	149	0.116	17.25
			Imaging	1000 - 1700 MHz	7.8 deg2	0.5:1 arcsec	2000	95 hr	150	Mid 4-5	Ι	496	0.023	11.48
Continuum - SFR(z) AASKA14:067	Continuum	37 + 38	Imaging	1000 - 1700 MHz	0.38 deg2	0.5:1 arcsec	2000	2000 hr	150	Mid 4-5	xl	1438	0.023	33.29
			Imaging	7 - 11 GHz	0.5 deg2	0.05:1 arcsec	1000	16.4 hr	150	Mid 11-12	m/l	18	0.012	0.21
			Imaging	7 - 11 GHz	30 arcmin2	0.05:1 arcsec	1000	1000 hr	150	Mid 11-12	xl	42	0.012	0.49

"Anticipated SKA1 HPC Requirement" May 2018 SKA-TEL-SKO-0000941

Three Tier Surveys	Measuring the star formation history of the Universe - non- thermal processes (HPSO #37)	Active Galactic Nuclei and their role in galaxy evolution (commensally with HPSO #37)
Band 2 – Tier 3 (B2 T3) area ~ 1 sq-deg target rms = 0.05 uJy	SFR>10 M⊙/yr galaxies up to z~3-4, and SFR>50 M⊙/yr galaxies up to z~6	RQ and low- power RL AGNs down to L~1. E+22 W/ Hz at z~3-4
Band 2 – Tier 2 (B2 T2) area ~10 sq-deg	SFR>10 M⊙/yr galaxies at z~1-2	RQ and low- power RL AGNs down to L~1.E+22 W/ Hz at z~1-2
target rms = 0.2 uJy Band 2 - Tier 1 (B2 T1) area ~1000 sq-deg; target rms = 1 uJy	Bulk of the SFG population (down to SFR~0.5 M⊙/yr at z~0.1; and to SFR~5 M⊙/ yr at z~0.5)	Bulk of the AGN population (RQ and low-power RL AGNs down to L~1.E+21 W/Hz at z~0.1 and to L~1.E +22 W/Hz at z~0.5)

Sargent & Hurley-Walker - For the Continuum SWG

Sargent & Hurley-Walker - For the Continuum SWG

Three Tier Surveys

Sargent & Hurley-Walker - For the Continuum SWG

Three Tier Surveys

"Anticipated SKA1 HPC Requirement" – May 2018 SKA-TEL-SKO-0000941

Largest fractional bandwidth request

ν _{min} (GHz)	ν _c (GHz)	ν _{max} (GHz)	Sub-band	Band	σ _c (μJy/Bm)	θ' _{min} (")	θ _{min} (")	θ _{max} (")	θ' _{max} (")	"Anticipated SKA1 HPC Requirement" – May 2018
0.050	0.060	0.069	Low sb1		163	16.4	23.5	1175	3290	SKA-TEL-SKU-0000941
0.069	0.082	0.096	Low sb2		47	11.9	17.0	850	2379	
0.096	0.114	0.132	Low sb3		26	8.6	12.3	614	1719	
0.132	0.158	0.183	Low sb4		18	6.2	8.9	444	1244	
0.183	0.218	0.253	Low sb5		14	4.5	6.4	321	899	
0.253	0.302	0.350	Low sb6		11	3.3	4.6	232	650	
0.35	0.41	0.48	Mid sb1	B1	16.8	1.015	2.031	270.8	541.6	
0.48	0.56	0.65	Mid sb2	B1	8.1	0.745	1.489	198.6	397.2	
0.65	0.77	0.89	Mid sb3	B1	4.4	0.546	1.092	145.6	291.2	
0.89	1.05	1.21	Mid sb4	B2	2.7	0.400	0.801	106.8	213.5	
1.21	1.43	1.65	Mid sb5	B2	2.0	0.294	0.587	78.3	156.6	
1.65	1.95	2.25	Mid sb6		1.6	0.215	0.431	57.4	114.9	
2.25	2.66	3.07	Mid sb7		1.4	0.158	0.316	42.1	84.2	
3.07	3.63	4.18	Mid sb8		1.6	0.116	0.232	30.9	61.8	
4.18	4.94	5.70	Mid sb9	B5a	1.4	0.085	0.170	22.7	45.3	
5.70	6.74	7.78	Mid sb10	B5a	1.3	0.062	0.125	16.6	33.2	Largest fractional bandwidth $(y = y)/y$
7.78	9.19	10.61	Mid sb11	B5b	1.2	0.046	0.091	12.2	24.4	Largest national ballowidth ($v_{Max} - v_{Min}$)/ v_{C}
10.61	12.53	14.46	Mid sb12	B5b	1.2	0.034	0.067	8.9	17.9	less than about 0.3

This means that to construct an image using the full design bandwidth of band 2 (as we would like to, in order to maximise sensitivity) we will have to stack **a posteriori in the image plane** images of individual sub-bands

Note that these sub-bands can still be observed simultaneously, but the final broad-band image will apparently not be delivered by SDP

This will have implications for the creation of deep, high-resolution mosaics reaching the required dynamic range and sensitivity which we will have to explore going forward

For the time being however, on the purely operational level, it is clear that an important role of the SRCs will be to carry out the final steps in producing wide-band, deep images

Direction Dependent Effects

"Although only limited support for Direction Dependent (DD) rather than Direction Independent (DI) calibration methods is currently implemented within the SDP parametric model, there is the ability to specify the number of Ionospheric patches for which gain solutions will be determined as well as the associated timescale"

"Anticipated SKA1 HPC Requirement" – May 2018 SKA-TEL-SKO-0000941

Diffuse sources & Cosmic Web

Best possible DD calibration and imaging scheme, not necessarily the same as for point/compact sources Need of point source subtraction and, at least, tapering Need of spectral maps

Nearby galaxies & Supernovae

Beswick et al. 2015

Graphics: Milde Science Communication, HST Image: /NASA, ESA, and The Hubble Heritage Team (STScI/AURA); Radio Images: A. Brunthaler, MPIfR.