Open Science and reproducibility at SRCs

Julián Garrido Sánchez (@tetrarquis) on behalf of AMIGA group Instituto de Astrofísica de Andalucía (CSIC)

> AENEAS meeting, Utrecht 13 November 2019

Instituto de Astrofísica de Andalucía, IAA-CSIC

EXCELENCIA SEVERO

OCHOA

OPEN

Knowledge is open if anyone is free to access, use, modify, and share it

A WORLD WHERE KNOWLEDGE CREATES POWER FOR THE MANY, NOT THE FEW. THIS IS THE WORLD WE CHOOSE.

<u>Open Definition</u>, Open Knowledge Foundation, <u>https://okfn.org</u> <u>Open Science</u>, European Commission, 2017, doi: 10.2777/75255

OPEN

Knowledge is open if anyone is free to access, use, modify, and share it

A WORLD WHERE KNOWLEDGE CREATES POWER FOR THE MANY, NOT THE FEW. THIS IS THE WORLD WE CHOOSE.

Open Science represents an approach to research that is collaborative, transparent and accessible

Open Definition, Open Knowledge Foundation, https://okfn.org

OPEN SCIENCE

Other activities that come under the umbrella of Open Science:

- Open access publishing
- Open data
- Open Source
- Open peer review
- Open research
- Citizen science + stakeholder engagement

OPEN ACCESS IN THE FPS

ATTITUDE TOWARDS DATA SHARING

Benefits of sharing research data

Reference dates: 2016 and 2018

% of researchers per benefit

Source: Open science monitor

ATTITUDE TOWARDS DATA SHARING

% of researchers that share data

Reference dates: 2016 and 2018

Source: Open science monitor

Open Science in a real scientific experiment

http://littlepandabears.blogspot.com/2018/09/galaxies.html https://searchengineland.com/figz/wp-content/seloads/2014/08/lab-test-experiment-ss-1920.jpg

SPECIFIC EXAMPLE: HI IN HCG 16

- HCG 16 is complex compact group with starburst galaxies, AGN, tidal tails, etc. The main goal of this project is to is to study the HI content of the group and to determine which on-going processes are causing it to change.
- Collaborators: L. Verdes-Montenegro, A. Damas, S. Borthakur, M. Yun, A. del Olmo, J. Perea, B. Williams, D. Lopez Gutierrez, F. Vogt, S. Luna, J. Román, J. Garrido, S. Sanchez, J. Cannon & P. Ramírez

Viewpoints	Reset View	R.A Dec.	V - Dec.	V - R.A.	Perspective View	Next View
HI layers:	12-sigma 9	sigma 6-sig	gma 3-si	gma		

-600

BEING FAIR

FAIR (www.go-fair.org) is a multi-disciplinary bottom-up initiative to make scientific data reusable. The FAIR principles state that scientific data should be:

- **Findable:** Data have sufficient metadata and unique, persistent identifiers in a searchable database.
- Accessible: Data is stored in trusted/standard repository. Metadata and data can be understood by machines/people.
- **Interoperable:** Metadata use a standard language, external connections to other data/resources are qualified.
- **Reusable:** Data have sufficient provenance information and clear licenses.

@tetrarquis

BEING UN-FAIR

Common astronomy examples of un-FAIR practices:

- The final data are "available", but you **need to request** them by email.
- The **raw** data are in an **archive** but the final, **reduced data** and images are only publicly available in the paper **PDF**.
- There are some **scripts** for processing the data on a server somewhere, but no one remembers how to run them.
- The code is on **github**, but good luck trying to install/execute it.

I'm not pointing fingers here, we are all guilty of these things, myself included. We need to improve as a community.

- FAIR focuses on the **data**, we want to go beyond this and include also the **methods**.
- It is executed entirely within Docker containers and Conda environments. So it can be run on any platform with Docker and Conda, using a single bash script.
- The code and data are publicly available in **github** and **EUDAT**.
- The workflow can also be executed in EOSC

The raw data are hosted on a the EUDAT service, which provides:

- Cloud storage
- Persistent identifiers (DOI)
- Access (can download with wget)
- Basic metadata and search functionality

RECORDS » AF679ED67B644432AE1A5F61B9654255

HCG16 L-band VLA C+D array data

by [Unknown]

Mar 5, 2019

TechnicalInfo: The VLA D and C array data of HCG 16 were collected by the Very Large Array (http://www.vla.nrao.edu/) in 1989 and 1999, under PI projects of Jacqueline van Gorkom and Marcus Verheijen. The project numbers are AW234 and AW500 respectively. The full original data of these projects are hosted by the VLA Archive (https://science.nrao.edu/facilities/vla/archive/index).

Disciplines: 3.5.2.1.1 \rightarrow Observational astronomy \rightarrow Radio astronomy;

DOI: 10.23728/b2share.af679ed67b644432ae1a5f61b9654255 Copy

PID: 11304/16c0eb14-0bb0-4ec0-9ff4-11eeee0033c8 Copy

• All the code for the all of the workflow from raw data to final plots is stored in github and is openly accessible.

📮 AMIGA-IAA / hcg-16		O Unwato	ch ▼ 5 ★ Sta	ar 2 YFork 0	
<> Code (!) Issues 0 (!)	Pull requests 0 🔳 Project	s o 🗉 Wiki 🕕 Se	curity Insights	Settings	
HCG-16 Project Manage topics					Edit
🕝 130 commits	🖗 3 branches	♥ 0 releases	😃 3 contribu	tors	مَلِّه MIT
Branch: master - New pull re	equest		Create new file Upload	files Find File	Clone or download -
ionesmg Merge branch 'maste	er' of github.com:AMIGA-IAA/hcg-16	6		Latest comr	nit ef 70764 6 days ago
🗖 casa	Added NW clump to moment	s generation task.			3 months ago
cgatcore	Update pipeline.py				10 days ago
docker	bugfix docker/Dockerfile.sofi	а			7 months ago
plot_scripts	Changed plot range to includ	e NW clump.			6 days ago
🖬 sofia	Added HIPASS cube SoFiA st	ep to pipeline.			12 days ago
	Initial commit				7 months ago
README.md	edit README file to explain h	ow to run ipynb files from	local		6 days ago
environment.yml	change plotting task				4 months ago
postBuild	Added HIPASS mask to tar				10 days ago
🖹 run.sh	jupyter nbconvertto pytho	ı			2 months ago

https://github.com/AMIGA-IAA/hcg-16

- run.sh will do automatically the following steps:
 - download and install conda
 - download and install cgatcore, a workflow management system
 - construct a conda python environment with which to run the code
 - download the source code
 - download the input data
 - run the pipeline

REPRODUCIBLE FIGURES

8 binder Starting repository: AMIGA-IAA/hcg-16/master 🗂 Jupyter Quit Files Running Clusters Select items to perform actions on them. Upload New - 2 / plot_scripts Name 🕹 Last Modified 0 -File size ∟.. seconds ago Fig1-DECaLS_grz_image.ipynb 2 hours ago 3.45 kB Fig12-Absorption_profile.ipynb 2 hours ago 4.24 kB 8.25 kB Fig16-TDG_candidates_moments.ipynb 2 hours ago Fig2-Moment0_overlay.ipynb 2 hours ago 6.67 kB Fig3-Moment1.ipynb 2 hours ago 4.91 kB Fig4-Integrated_spectrum.ipynb 2 hours ago 10.1 kB 16.5 kB Fig5-6_Tab2-Separated_spectra.ipynb 2 hours ago 23.4 kB Fig8-11_13-14-Galaxy_moment_maps.ipynb 2 hours ago FigC1-C2-Channel_maps.ipynb 2 hours ago 10.2 kB \square cd_bridge.fits 3 months ago 1.56 MB cd_bridge_mask.fits 4 months ago 3.11 MB E_clump.fits 3 months ago 43.2 kB

https://mybinder.org/v2/gh/AMIGA-IAA/hcg-I6/master

Figure 2. HCG 16 HI moment zero map and overlay

in []:	<pre>import matplotlib,aplpy from astropy.wcs import WCS from astropy.io import fits from general_functions import * import matplotlib.pyplot as plt</pre>
in []:	<pre>font = {'size' : 14, 'family' : 'serif', 'serif' : 'cm'} plt.rc('font', **font) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['lines.linewidth'] = 1 plt.rcParams['axes.linewidth'] = 1 #Set to true to save pdf versions of figures save_figs = True</pre>

The files used to make the following plot are:

In []: moment0_casa = 'HCG16_CD_rob2_MS.mom0.pbcor.fits'
moment0_sofia = 'HCG16_CD_rob2_MS_mom0.fits'
r_image_decals = 'HCG16_DECaLS_r_cutout.fits'

- 1. A moment 0 map of HCG 16 generated using a simple 3σ threshold in each channel (made with CASA). This file was generated in the *imaging* step of the workflow, which is described in the script <u>imaging.py</u>.
- 2. A moment 0 map of HCG 16 generated using 3.5σ mask made with SoFiA after smoothing over various kernel sizes. This file was generated in the *masking* step of the workflow. The SoFiA parameters file which makes this file is <u>HCG16_CD_rob2_MS.3.5s.dil.session</u>.
- 3. An *r*-band DECaLS fits image of HCG 16. This file was downloaded directly from the <u>DECaLS public website</u>. The exact parameters defining the region and pixel size of this images is contained in the <u>pipeline.yml</u> file.

TOWARDS FAIR & OPEN SCIENCE

- Open access publishing
- Open data
- Open Source
- Open peer review
- Open research
- Citizen science

TOWARDS FAIR & OPEN SCIENCE

- Open access publishing
- Open data
- Open Source
- Open peer review
- Open research
- Citizen science

If I have seen further it is by standing on the shoulders of Giants (Isaac Newton)