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Diffraction

Plasma screen behaves like a conventional phase-coherent lens.

Correlation length for phase = r0≈rEarth

Random images of size Dscreen λ/alens ≈(1+M) r0  cover the observer plane. 
(This equality comes about because r0 determines alens .) 

Correlation drops at baseline b=(1+M) r0 

Fractional bandwidth of images=(Δν/νObs)≈(alens/Dscreen)≪1

Magnification M=0 for extragalactic source, M=1 for screen midway.
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Pulsars
Diffractive scattering is seen only for pulsars (and GRB, FRB, and IDV sources in some cases).

The observer sees point-source diffraction pattern, convolved with an image of the source. Source size ≫ r0 smears the pattern to undetectability.

Motion of the source (or Earth) moves the pattern across the observer’s instrument.

 


Space VLBI Can: 

Sample more than one image (“scintle”) and measure statistics of the diffraction pattern

2012 ApJ arXiv:1208.0039 Gwinn, Johnson, Reynolds, Jauncey, Tzioumis, Dougherty, Carlson, Del Rizzo, Hirabayashi, Kobayashi, Murata, Edwards, Quick, Flanagan, McCulloch

2016 ApJ arXiv:1501.04449 Gwinn, Popov, Bartel, Andrianov, Johnson, Joshi, Kardashev, Karuppusamy, Kovalev, Kramer, Rudnitskii, Safutdinov, Shishov, Smirnova, Soglasnov, Steinmassl, Zensus, Zhuravlev

2017 MNRAS arXiv:1609.04008 Popov, Bartel, Gwinn, Johnson, Andrianov, Fadeev, Joshi, Kardashev, Karuppusamy, Kovalev, Kramer, Rudnitskiy, Shishov, Smirnova, Soglasnov, Zensus

2020 ApJ arXiv:1912.03970 Popov, Bartel, Burgin, Gwinn, Smirnova, Soglasnov


Estimate location of scattering material along the line of sight, by comparison of r0, DPulsar,…

2014 ApJ arXiv:1402.6346 Smirnova, Shishov, Popov, Gwinn, Anderson, Andrianov, Bartel, Deller, Johnson, Joshi, Kardashev, Karuppusamy, Kovalev, Kramer, Soglasnov, Zensus, Zhuravlev

2016 ARep https://link.springer.com/article/10.1134/S1063772916090067 Popov, Andrianov, Bartel, Gwinn, Joshi, Jauncey, Kardashev, Rudnitskii, Smirnova, Soglasnov, Fadeev, Shishov

2017 ARep https://link.springer.com/article/10.1134/S1063772917060014 Andrianov, Smirnova, Shishov, Gwinn, Popov


Detect Cosmic Prisms: large-scale lateral gradients of electron density

2014 ApJ arXiv:1402.6346  Smirnova, Shishov, Popov, Gwinn, Anderson, Andrianov, Bartel, Deller, Johnson, Joshi, Kardashev, Karuppusamy, Kovalev, Kramer, Soglasnov, Zensus, Zhuravlev
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Pulsars
Diffractive scattering is seen only for pulsars (and GRB, FRB, and IDV sources in some cases).
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Pulsars
Diffractive scattering is seen only for pulsars (and GRB, FRB, and IDV sources in some cases).
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Diffractive scattering is seen only for pulsars (and GRB, FRB, and IDV sources in some cases).
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Pulsars
Diffractive scattering is seen only for pulsars (and GRB, FRB, and IDV sources in some cases).

The observer sees point-source diffraction pattern, convolved with an image of the source. Source size ≫ r0 smears the pattern to undetectability.

Motion of the source (or Earth) moves the pattern across the observer’s instrument.

 


Space VLBI Can: 

Sample more than one image (“scintle”) and measure statistics of the diffraction pattern

2012 ApJ arXiv:1208.0039 Gwinn, Johnson, Reynolds, Jauncey, Tzioumis, Dougherty, Carlson, Del Rizzo, Hirabayashi, Kobayashi, Murata, Edwards, Quick, Flanagan, McCulloch

2016 ApJ arXiv:1501.04449 Gwinn, Popov, Bartel, Andrianov, Johnson, Joshi, Kardashev, Karuppusamy, Kovalev, Kramer, Rudnitskii, Safutdinov, Shishov, Smirnova, Soglasnov, Steinmassl, Zensus, Zhuravlev

2017 MNRAS arXiv:1609.04008 Popov, Bartel, Gwinn, Johnson, Andrianov, Fadeev, Joshi, Kardashev, Karuppusamy, Kovalev, Kramer, Rudnitskiy, Shishov, Smirnova, Soglasnov, Zensus

2020 ApJ arXiv:1912.03970 Popov, Bartel, Burgin, Gwinn, Smirnova, Soglasnov


Estimate location of scattering material along the line of sight, by comparison of r0, DPulsar,…

2014 ApJ arXiv:1402.6346 Smirnova, Shishov, Popov, Gwinn, Anderson, Andrianov, Bartel, Deller, Johnson, Joshi, Kardashev, Karuppusamy, Kovalev, Kramer, Soglasnov, Zensus, Zhuravlev

2016 ARep https://link.springer.com/article/10.1134/S1063772916090067 Popov, Andrianov, Bartel, Gwinn, Joshi, Jauncey, Kardashev, Rudnitskii, Smirnova, Soglasnov, Fadeev, Shishov

2017 ARep https://link.springer.com/article/10.1134/S1063772917060014 Andrianov, Smirnova, Shishov, Gwinn, Popov


Detect Cosmic Prisms: large-scale lateral gradients of electron density

2014 ApJ arXiv:1402.6346  Smirnova, Shishov, Popov, Gwinn, Anderson, Andrianov, Bartel, Deller, Johnson, Joshi, Kardashev, Karuppusamy, Kovalev, Kramer, Soglasnov, Zensus, Zhuravlev

2017MNRAS arXiv:1605.05727 Shishov, Smirnova, Gwinn, Andrianov, Popov, Rudnitskiy, Soglasnov,


Estimate or set upper limits on size of pulsar emission region—role of space baselines?

2012 ApJ  arXiv:1208.0040 Gwinn, Johnson, Reynolds, Jauncey, Tzioumis, Hirabayashi, Kobayashi, Murata, Edwards, Dougherty, Carlson, Del Rizzo, Quick, Flanagan, McCulloch
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Refractive Scattering
Refractive scattering is seen for compact sources smaller than alens ~1 AU.

The observer sees complicated substructure within the scattered image. 

The substructure consists of tiny, distorted images of the source.

If the source has size ~ alens, the substructure is smeared out.

Refractive substructure changes only over times tRefractive~weeks to months. 

The long-term average approaches the smooth “ensemble-average image.”


Goodman & Narayan 1989 MNRAS https://academic.oup.com/mnras/article/238/3/995/1048426

Johnson & Gwinn 2015 ApJ arxiv:1502.05722
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Refractive Substructure

Avg Scattered Image

Refractive scattering appears as noise atop the average visibility.

Refractive “noise” is most apparent at long baselines, where the 
average image is resolved.


From refractive scattering of SgrA*, we can set limits on the 
intrinsic size of the source, and the index of the tubulence 
spectrum.

Average Visibility〈V〉

Theory says:

Intensity modulation ΔV/VAvg~0.01% to 10%.

The index of turbulence α gives the strength of large-scale 
fluctuations (refractive noise) vs small-scale fluctuations 
(image broadening).

Larger intrinsic source size reduces refractive noise.
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Active Galactic Nuclei
3C273

These plots are from:

Johnson, Kovalev, Gwinn, Gurvits, Narayan, Macquart, Jauncey, Voitsik, Anderson, Sokolovsky, Lisakov 2016 ApJ arXiv:1601.05810
Also see:

Kovalev, Kardashev, Kellermann, Lobanov, Johnson, Gurvits, Voitsik, Zensus, Anderson, Bach, Jauncey, Ghigo, Ghosh, Kraus, Kovalev, Lisakov, Petrov, 
Romney, Salter, Sokolovsky 2016 ApJ arXiv:1601.05806

Pilipenko, Kovalev, Andrianov, Bach, Buttaccio, Cassaro, Cimò, Edwards, Gawroński, Gurvits, Hovatta, Jauncey, Johnson, Kovalev, Kutkin, Lisakov, 
Melnikov, Orlati, Rudnitskiy, Sokolovsky, Stanghellini, de Vicente, Voitsik, Wolak, Zhekanis 2018 MNRAS arXiv:1711.06713

λ=18 cm: 

Visibility on 1.5⨉105 km baseline 
is likely refractive noise.

λ=6 cm: 

Visibility on 1.0⨉105 km baseline 
is likely average+refractive noise.

λ=1.3 cm: 

Visibility on 1.0⨉105 km baseline 
is likely average scattered image.

https://arxiv.org/abs/1601.05806
https://ui.adsabs.harvard.edu/link_gateway/2018MNRAS.474.3523P/arxiv:1711.06713
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Scattered H2O Masers in W49N

Masers lie in the Galactic plane. 

More distant masers show effects of 
scattering — at distances≳1 kpc.


Masers appear in clusters, so that they 
provide an opportunity to compare 
scattering on many nearby lines of sight.

Masers have intrinsic structure at scales 
of about 1 AU— at least in some spectral 
channels.


RadioAstron-Earth observations show an 
average scattering disk, and refractive 
noise on long baselines.


W49N distance=12 kpc ⇒ 1 AU=80 µas.

Average Scattering Disk
240x180 μas P.A=98°

Shakhvorostova, Moran, Alakoz, Imai, Gwinn, Sobolev , Litovchenko, in preparation

Refractive Scattering of a Bright Maser Feature in W49N Observed on a 60,000 km VLBI Baselines 
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Scattering for paths < 1kpc, or at High Galactic Latitude
Modern single-dish observations show very simple diffraction patterns for pulsars at <1kpc.

Frequency→
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m

e→

Diffraction patterns show:
• Modulation ΔI/⟨I⟩≈10% (vs 100% for distant pulsars)

• Simple patterns with just a few degrees of freedom
• FT(pattern) lies on a parabolic arc (Stinebring et al. 2007)

Diffraction pattern for pulsar B0834+06

at the Green Bank telescope.
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1960’s-style Moire pattern.

Presently Favored Interpretation:
• All scattering is concentrated into 1 (or a few) thin screens
• Scattering screen contains just a few, isolated scatterers

                       Walker et al. 2004 (snowballs), Gwinn 2019a,b (noodles)
• These can easily match the Kolmogorov correlation function
• But ɸ is not drawn from a Gaussian distribution at each point


• Ground-based VLBI tends to confirm this picture
• Despite several efforts, we did not attain sufficient sensitivity to observe 
parabolic arcs with RadioAstron-ground baselines
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Next Generation VLBI Observations
Questions for you:


Noodles and Snowballs
• How would an extragalatic radio source appear, if seen through a screen containing just a few (<100) plasma noodles?
• Could effects of scattering by just a few scatterers be removed? What would that require?

Interesting fact about convolution: 

Effects of scattering are always a convolution (sometimes averaged during or after observations).  This is a code so simple that only a fool 
would use it to communicate over the Internet.


IDV Sources

Conventional theory requires scattering to lie very close to the Earth (<10pc), mostly because the imaged source is small, and magnification 
is related to screen distance for single-screen scattering.

Could a pair of screens produce a small image at Earth, even if both lie beyond 100pc?

     Interesting fact about camera lenses:


A pair of lenses, far from the sensor, can produce a tiny image (e.g. 10mm focal length, lenses more than 50mm from sensor).


FRBs (Fast Radio Bursts)
• Are FRBs dispersed caustics, crossing the Earth?
• Is their dispersion due to Gpc-scale propagation — or from cosmic prisms?
• Do we have the sensitivity and scheduling flexibility to catch an FRB? 
• Can we detect the associated phenomena? (Cosmic prisms with 3rd-order corrections?)


Theoretical issues
• What does refractive scattering look like, if we drop the assumption that ɸ is drawn from a Gaussian distribution at each point?
• Can we gain more information on source structure, from refractive and diffractive scattering? What observations do we need?




Next Generation VLBI Observations
Questions for you:


Noodles and Snowballs
• How would an extragalatic radio source appear, if seen through a screen containing just a few (<100) plasma noodles?
• Could effects of scattering by just a few scatterers be removed? What would that require?

Interesting fact about convolution: 

Effects of scattering are always a convolution (sometimes averaged during or after observations).  This is a code so simple that only a fool 
would use it to communicate over the Internet.


IDV Sources

Conventional theory requires scattering to lie very close to the Earth (<10pc), mostly because the imaged source is small, and magnification 
is related to screen distance for single-screen scattering.

Could a pair of screens produce a small image at Earth, even if both lie beyond 100pc?

     Interesting fact about camera lenses:


A pair of lenses, far from the sensor, can produce a tiny image (e.g. 10mm focal length, lenses more than 50mm from sensor).


FRBs (Fast Radio Bursts)
• Are FRBs dispersed caustics, crossing the Earth?
• Is their dispersion due to Gpc-scale propagation — or from cosmic prisms?
• Do we have the sensitivity and scheduling flexibility to catch an FRB? 
• Can we detect the associated phenomena? (Cosmic prisms with 3rd-order corrections?)


Theoretical issues
• What does refractive scattering look like, if we drop the assumption that ɸ is drawn from a Gaussian distribution at each point?
• Can we gain more information on source structure, from refractive and diffractive scattering? What observations do we need?




Next Generation VLBI Observations
Questions for you:


Noodles and Snowballs
• How would an extragalatic radio source appear, if seen through a screen containing just a few (<100) plasma noodles?
• Could effects of scattering by just a few scatterers be removed? What would that require?

Interesting fact about convolution: 

Effects of scattering are always a convolution (sometimes averaged during or after observations).  This is a code so simple that only a fool 
would use it to communicate over the Internet.


IDV Sources

Conventional theory requires scattering to lie very close to the Earth (<10pc), mostly because the imaged source is small, and magnification 
is related to screen distance for single-screen scattering.

Could a pair of screens produce a small image at Earth, even if both lie beyond 100pc?

     Interesting fact about camera lenses:


A pair of lenses, far from the sensor, can produce a tiny image (e.g. 10mm focal length, lenses more than 50mm from sensor).


FRBs (Fast Radio Bursts)
• Are FRBs dispersed caustics, crossing the Earth?
• Is their dispersion due to Gpc-scale propagation — or from cosmic prisms?
• Do we have the sensitivity and scheduling flexibility to catch an FRB? 
• Can we detect the associated phenomena? (Cosmic prisms with 3rd-order corrections?)


Theoretical issues
• What does refractive scattering look like, if we drop the assumption that ɸ is drawn from a Gaussian distribution at each point?
• Can we gain more information on source structure, from refractive and diffractive scattering? What observations do we need?




Next Generation VLBI Observations
Questions for you:


Noodles and Snowballs
• How would an extragalatic radio source appear, if seen through a screen containing just a few (<100) plasma noodles?
• Could effects of scattering by just a few scatterers be removed? What would that require?

Interesting fact about convolution: 

Effects of scattering are always a convolution (sometimes averaged during or after observations).  This is a code so simple that only a fool 
would use it to communicate over the Internet.


IDV Sources

Conventional theory requires scattering to lie very close to the Earth (<10pc), mostly because the imaged source is small, and magnification 
is related to screen distance for single-screen scattering.

Could a pair of screens produce a small image at Earth, even if both lie beyond 100pc?

     Interesting fact about camera lenses:


A pair of lenses, far from the sensor, can produce a tiny image (e.g. 10mm focal length, lenses more than 50mm from sensor).


FRBs (Fast Radio Bursts)
• Are FRBs dispersed caustics, crossing the Earth?
• Is their dispersion due to Gpc-scale propagation — or from cosmic prisms?
• Do we have the sensitivity and scheduling flexibility to catch an FRB? 
• Can we detect the associated phenomena? (Cosmic prisms with 3rd-order corrections?)


Theoretical issues
• What does refractive scattering look like, if we drop the assumption that ɸ is drawn from a Gaussian distribution at each point?
• Can we gain more information on source structure, from refractive and diffractive scattering? What observations do we need?




Next Generation VLBI Observations
Questions for you:


Noodles and Snowballs
• How would an extragalatic radio source appear, if seen through a screen containing just a few (<100) plasma noodles?
• Could effects of scattering by just a few scatterers be removed? What would that require?

Interesting fact about convolution: 

Effects of scattering are always a convolution (sometimes averaged during or after observations).  This is a code so simple that only a fool 
would use it to communicate over the Internet.


IDV Sources

Conventional theory requires scattering to lie very close to the Earth (<10pc), mostly because the imaged source is small, and magnification 
is related to screen distance for single-screen scattering.

Could a pair of screens produce a small image at Earth, even if both lie beyond 100pc?

     Interesting fact about camera lenses:


A pair of lenses, far from the sensor, can produce a tiny image (e.g. 10mm focal length, lenses more than 50mm from sensor).


FRBs (Fast Radio Bursts)
• Are FRBs dispersed caustics, crossing the Earth?
• Is their dispersion due to Gpc-scale propagation — or from cosmic prisms?
• Do we have the sensitivity and scheduling flexibility to catch an FRB? 
• Can we detect the associated phenomena? (Cosmic prisms with 3rd-order corrections?)


Theoretical issues
• What does refractive scattering look like, if we drop the assumption that ɸ is drawn from a Gaussian distribution at each point?
• Can we gain more information on source structure, from refractive and diffractive scattering? What observations do we need?




Next Generation VLBI Observations
Questions for you:


Noodles and Snowballs
• How would an extragalatic radio source appear, if seen through a screen containing just a few (<100) plasma noodles?
• Could effects of scattering by just a few scatterers be removed? What would that require?

Interesting fact about convolution: 

Effects of scattering are always a convolution (sometimes averaged during or after observations).  This is a code so simple that only a fool 
would use it to communicate over the Internet.


IDV Sources

Conventional theory requires scattering to lie very close to the Earth (<10pc), mostly because the imaged source is small, and magnification 
is related to screen distance for single-screen scattering.

Could a pair of screens produce a small image at Earth, even if both lie beyond 100pc?

     Interesting fact about camera lenses:


A pair of lenses, far from the sensor, can produce a tiny image (e.g. 10mm focal length, lenses more than 50mm from sensor).


FRBs (Fast Radio Bursts)
• Are FRBs dispersed caustics, crossing the Earth?
• Is their dispersion due to Gpc-scale propagation — or from cosmic prisms?
• Do we have the sensitivity and scheduling flexibility to catch an FRB? 
• Can we detect the associated phenomena? (Cosmic prisms with 3rd-order corrections?)


Theoretical issues
• What does refractive scattering look like, if we drop the assumption that ɸ is drawn from a Gaussian distribution at each point?
• Can we gain more information on source structure, from refractive and diffractive scattering? What observations do we need?



