ngSVLBI Workshop 2022

Orbital Configurations for Photon Ring Detection

18th October 2022

Ben Hudson

Leonid Gurvits, Maciek Wielgus, Lei Liu, Weimin Zheng

Interferometric Signature of Photon Rings

Credit: Michael D. Johnson, et al. 2020

24/10/2022

Interferometric Signature of Photon Rings

Broderick, Tiede, Pesce, Gold. 2022 – Measuring Spin from Relative Photon-Ring Sizes

Wielgus. 2021 – Photon rings of spherically symmetric black holes and robust tests of non-Kerr metrics

Gralla, Lupsasca, Marrone. 2020 – The shape of the black hole photon ring: A precise test of strong-field general relativity

Credit: Michael D. Johnson, et al. 2020

Performance Requirements

- 1. Absolute baseline variation between 20 G λ and 200 G λ
- 2. Sample (u,v) plane at the Nyquist rate
- 3. Achieve the required baseline variation for any position on the celestial sphere

System Overview

- Two radio telescopes forming an interferometer
- Primary frequency of 690 GHz (EHI Mission Concept)
- Range of alternative frequencies considered

		~10 µas ↓	~1 µas ↓
Frequency [GHz]	Wavelength [mm]	20 G <i>λ</i> [x10 ⁴ km]	200 Gλ [x10 ⁵ km]
230	1.30	2.61	2.61
345	0.87	1.74	1.74
590	0.51	1.02	1.02
690	0.43	0.87	0.87
1200	0.25	0.50	0.50

• Onboard frequency standard

Orbit Optimisation

• Genetic Algorithm, Python-based optimisation method

Earth Orbit

- Two circular, coplanar orbits
- Right ascension separated by 180° to achieve counter-rotating orbits
- Propagation with J2 harmonic perturbation

Frequency [GHz]	THEZA 1 Radius [km]	THEZA 2 Radius [km]
230	144000	121000
345	95800	80400
590	56000	47000
690	47900	40200
1200	27500	23100

Earth Orbit

- Demanding thermal control
 - < 4 K receiver temperature depending on mixer used
- Solar heat flux of ~1371 W/m^2
 - JWST-like sun shield
 - Observe away from the Sun
 - Sources visible for two, 60 day periods/yr
- Significant emission from the Earth

Earth Orbit

- Best case (*u*,*v*) coverage of M87* for 7-day observation
- 20 200 G λ achieved regardless of date/time or position of source
- Baseline length variation achieved in 10hr period
 - (u, v) plane sampled ~3.3 G λ in 10 hr
 - Rate increases to $0.15 \text{ G}\lambda$ for 7-day observation

24/10/2022

Earth-Moon L2

- Two halo orbits with z-excursion 60000 km
 - Perilune of ~18000 km
- Richardson's 3rd order analytical approximation
 - Numerical solution of 3-body problem for more accurate solution

Earth-Moon L2

- $20 200 \text{ G}\lambda$ baseline variation achieved in 7 days
- Low Moon thermal emission and albedo creates more stable thermal environment
- At $t_{int} = 1000$ s, signal sampled ~0.1 G λ
 - Each oscillation sampled 50 times

Earth-Moon L2

Frequency [GHz]	Z-Excursion [km]	X-Excursion [km]	Period [days]
590	60000	25600	11.2
690	51300	22700	13.1
1200	29500	16100	14.8

Sun-Earth L2

- Near-Rectilinear Halo Orbits (NRHO)
- Perigee radii of 36,000 and 46,000 km
- Apogee of ~1.8 million km
- Primary benefits:
 - Thermal stability
 - Improved downlink data rate at perigee
- Challenges:
 - 80 day period: Drastic reduction in availability

ngSVLBI Workshop 2022

13

24/10/2022

ngSVLBI Workshop 2022

14

Challenges

- Baseline determination
 - Combination of inter-satellite ranging (E.g. LISA Mission), ground-based observations and post processing
- Thermal control
 - Sun shield and observation away from solar direction
 - Active thermal control (E.g. Cryogenics)
- Data handling & Comms
 - Data rates > 1 Gbps achievable in Earth orbit below GEO, progressing to > 100 Gbps in near-future (NASA's TBIRD System, Robinson, et al. 2018)
 - Optical ISL introduces possibility of in-orbit correlation
 - Optical comms up to 622 Mbps demonstrated in Lunar orbit
- Onboard frequency standard

SNR & Thermal Noise

	$\tau = \frac{1}{SEFD_1SE_1}$	EFD_2		$\sigma_{thermal}$			Bandwidth [GHz]		
$0 = \frac{1}{0.88} \sqrt{\frac{2\Delta v t_{int}}{2}}$			[mJy]		4	16	32	64	
$SEFD = \frac{2k_B T_{sys}}{\eta A}$		1	1	29.8 (33.6)	14.9 (67.2)	10.5 (95.0)	7.44 (134)		
	Parameter	Value		$[\mathbf{s}]$	10	9.42 (106)	(212)	(300)	2.33 (425)
	f	690 GHz				2.08	1.40	1.05	0.74
	D	15 m			100	(336)	(672)	(950)	0.74 (1343)
	T_{sys}	150 K				0.04	0.47	0.22	0.24
	$\eta (= \eta_{ap} \eta_{cor} \eta_{clock})$	0.5			1000	0.94 (1062)	(2124)	(3004)	0.24 (4248)

24/10/2022

SNR & Thermal Noise

24/10/2022

Conclusion

- Range of potential orbit designs suitable for photon ring detection
 - All achieve required baseline variation for sources at all positions on the celestial sphere
- Scientific outputs:
 - Potential to improve mass and spin estimations of M87*
 - Consistency tests of GR
 - Measure deviations from the Kerr metric and general GR predictions
- General imaging: order of magnitude improvement on EHT to $\sim 1 \ \mu as$
- Starting point for more detailed mission concept design and feasibility analysis