Chinese Outlook for Space VLBI

Tao An on behalf of Space VLBI team Shanghai Astronomical Observatory

Next Generation Space VLBI workshop, 2022 Oct 17-19

Outline

- SMVA: Space mm-wavelength VLBI Array
- SLRO: Space Low-frequency Radio Observatory
- LOVEX: Lunar Orbit VLBI EXperiment
- SERA: Space Extendable Radio-telescope Array

Refe: An, T., X. Hong, W. Zheng, S. Ye, Z. Qian and Space VLBI Team, Space very long baseline interferometry in China, 2020, Advances in Space Research, 65, 850 <u>https://arxiv.org/abs/1901.07796</u>

VSOP - first Space VLBI of scientific operation

IAA Award to VSOP Team

RadioAstron: a Guinness World Record of resolution

Credit: Giovannini et al. Nature Astro. (2018) RadioAstron

Future Space VLBI

Gurvits, L. I., Space VLBI: from first ideas to operational missions, 2020, Advances in Space Research, 65, 868

proposals and plans for next-generation space VLBI: see other colleagues' talks

SMVA (2012-2015): Space mm-wavelength VLBI Array a step toward imaging the most compact astronomical objects PI: Xiaoyu Hong

Hong, X., Z. Shen, T. An, and Q. Liu, The Chinese space Millimeter-wavelength VLBI array-A step toward imaging the most compact astronomical objects, 2014, Acta Astronautica, 102

Road map of Chinese mm-wavelength Space VLBI Array

- Stage 1: <u>Long-mm-wavelength</u> Space VLBI Array, aim to be funded in 2016-2020
 - two 10-meter Space telescopes, highest frequency 43GHz, to realize 20uas high resolution and good uv coverage together with ground-based telescopes for imaging.
- Stage 2: <u>Mm-wavelength</u> Space VLBI Array, aim to be funded in 2021-2025
 - three 12-15meter mm-wavelength Space telescopes (86GHz), to achieve high resolution with ground VLBI telescopes
- Stage 3: <u>submm</u> Space VLBI Array, aim to be funded after 2026
 - three-four 12-15meter Submm Space telescopes to acquire ultra-high resolution, great astrophysics breakthrough

SMVA: overall design, sciences, orbit, man.

- Two Satellites (10m in diameter)
 - Apogee: 60000 km
 - Perigee: 1200 km
 - Inclination: 28.5 deg
 - \circ $\ \ \, angle between two orbital planes: <math display="inline">120^{o}$
- Observing Bands:
 - X (6-9 GHz)
 - K (20-24 GHz)
 - Q (40-46 GHz)
 - Dual Polarization LCP/RCP
 - Cryogenic Rx (@22/43GHz)
- Data Rate (1.2 Gbps) or 2.4 Gbps
- Ang. Res.: 20 micro-as
- Pointing : <15"
- Life time: 3 years

SMVA: Scientific goals and system

Three Key sciences

- Portrait of SMBH: 20µas (4r_s), obtaining the image of BH shadow and innermost jet
- Accretion disk dynamics: NGC4258
- AGN Jet: formation, acceleration, collimation, Internal structure, composition, origin of high-energy radiation

CZ-38/C火箭急体布局

Space VLBI forum, 2013 Sep 16-18, Beijing

SLRO:

Space Low-frequency Radio Observatory Contact: Weimin Zheng, Tao An

An et al. 空间科学, A cosmic microscope to probe the Universe from Present to Cosmic Dawn - dual-element low-frequency space VLBI observatory (<u>arXiv:1808.10636</u>)

GOAL: Space VLBI in FAST & SKA era - 'microscope' probing the Universe from nearby exoplanets to SMBHs in Cosmic Dawn

2020-

2028-

Mission Concept

- Space Antenna: two 30m
- Orbit:
 - $\circ\,90000x2000$ km, 148.5°
- Frequency Bands: • 30-120, 30-170, 10-350, 580-1150, 1000-1700 MHz
- Weight: 1.5 Ton/satellite
- Resolution:
 - $\circ 8 \text{ mas}$ (80MHz)
 - 02 mas (300 MHz)
 - $\circ 0.3 \text{ mas}$ (1.5GHz)
- Sensitivity
 - \circ Baseline sensitivity: sub-mJy (10min)
 - Image sensitivity: micro-Jy/beam (1h, 1.5GHz)

New Physics New Phenomena

Flexible operation modes

1. Space-ground VLBI

- Unprecedented Super VLBI network consists of twin space-based VLBI Stations + ground large telescopes (SKA1, FAST, Arecibo, Effelsberg, Green Bank, GMRT, QTT.....)
- New electromagnetic spectrum window (30 300MHz), unexplored for space VLBI

2. Space-space VLBI (single baseline)

• Unique space-based VLBI, long integration time, fast response of super-burst of OH masers, auroral radiation from extrasolar systems, and other transients

3. Space-based single dish

 $\,\circ\,\,$ HI intensity mapping, EoR total power spectrum,

Scientific Goals

- Black holes and outflows: outflows from different-masses systems, in different cosmic era; first-generation SMBHs; intermediate-mass BHs, wind and large-aperture outflows, corona
- **Exoplanets**: VLBI astrometry; VLBI polarimetry; dynamic spectrum
- **Dark energy**: redshift 0.1-1 HI large-scale structure
- Investigating uas celestial reference frame
- understanding the nature of dark matter by detecting axion signals.
- Precise calibrations of star formation rates in galaxies.
- Obtaining high-precision positions of FRBs

BHs and outflows

Black hole outflows affect the cosmic ecosystem and its evolution Outflows are a new scientific breakthrough after black holes

BHs and outflows

Q: jet production, collimation and acceleration; how black hole outflows affect the ecosystem of the Univesre

S: Imaging the BH and outflow with high resolution

A: VLBI is the unique tool

G: a maojr breakthrough in the study of jet physics

BH and outflow

- The origin of the winds, which constitute the vast majority of the AGN, remains an open question.
- Need low frequency, high sensitivity
- Space low-frequency VLBI will solve the geometry of accretion disk wind, initial energy, coupling with the dynamical structure of the nuclear region
- Solve the outflow problem of 90% of the population in AGN

Exoplanet

Vedantham etal.(2020)

Exoplanet

Curiel et al. (2020)

uv coverage

Space antenna and feed

Overall scheme

Roadmap

• Prototyping

- 2022-2205, scientific objectives, key techniques, overall scheme, main prototypes
- Engineering
 - 5 years after funded.
 - first 3 years: launch first satellite
 - last 2 years: launch second satellite
- Operation
 - >8years lifetime

Contact: Xiaoyu Hong

- A sharpest view to the radio sky
- 4.2m radio dish around the Moon
- Working at X-band
- Wideband receiver: 512MHz
- No atmospheres

Space VLBI Project	LOVEX	VSOP	RAstron
Size (m)	4.2	8	10
Frequency (GHz)	8	1.6/4.9	0.3/1.6/5
		/22	/22
Max. baseline (ED)	33	3	28
Bandwidth (MHz)	512	64	32

- High resolution structure of jet base
- Constraint the orbit of deep space satellites
- Measure the size of jet base and brightness temperature

Geodetic science: Precision of geodetic measurements: $90 \sim 700$ ps Projected baseline length: $0 \sim 38 \ 10^4$ KM Outstanding for the testing of general relativitivity Contribute to deep space orbit determination

SERA:

Space Extendable Radio-telescope Array

Contact: Bo Zhang

- 1. Extendable antennas number
- 2. More arrays on different orbits
- 3. Extendable life time

Better sensitivity! Better resolution! Better uv-coverage! Larger FoV!

Telescope array/ Multi-Single dish /VLBI

(1)Working as a <u>stand-alone telescope</u> <u>array</u>:

All time All sky

(2)Working as <u>4 independent</u> <u>telescopes</u>:

All time All sky

(3) Working as a <u>VLBI element</u>:

A: phased-up (larger baseline sensitivity)

B: multi-beam (phase-referencing)

Simultaneous multi-band observation (L, C, X, Ku, K)

Parameters	SERA	
Frequency coverage	1.0-6.0, 6.0-26 GHz	
Reference frequency	1.6 GHz	
Baseline	50,000 km	
Diameter	15 m	
Antenna number	4 (Y-shape, extendable)	
Sensitivity (Ae/Tsys)	31.2 m ² /K	
Field of View		
Resolution	0.77 mas	
SEFD	88.5 Jy	
Source switching speed		

Telescope array and independent telescopes

- All-sky K-band line survey (22 GHz H₂O maser, etc)
- Pulsar/Maser-based autonomous-navigation experiment
- Search for Transients and pulsar all-time all-sky

VLBI

Combining with FAST, SKA, ngVLA..., maximum baseline~ 50,000 km

- Mechansim of AGN jets
- Measuring hubble constant based on 22GHz H_2O megamaser
- Triangulating galactic star formation regions based on masers
- Measuring orbit of multiple system with ultra-compact object
- Astrometric identification of exoplanets
- Spacecraft navigation

Space VLBI - international collaboration