The Event Horizon Explorer More Than Two, the Black Hole Demography Science Goal

Daniel J. D'Orazio, Thomas Essinger-Hileman, Dominic Pesce, Daniel Palumbo, and the Event Horizon Explorer Study Team

> NG Space VLBI workshop ASTRON/JIVE October 18, 2022

EHE Science Objectives:

* Precision Black Hole Measurements

Credit: Michael Johnson (CfA)

Peter Galison's and Freek Roelofs' talk

* Black Hole Accretion and Jets

Image credit: Ronald Gamble, NASA/GSFC UMD – College Park / CRESST

* Black Hole Formation and Demography

EHE Science Objectives:

* Black Hole Formation and Demographics

EHE Science Objectives:

* Black Hole Formation and Demographics

I. More single shadows What could we learn? How many could we detect?

II. More than single shadows

I. More single shadows? What could we learn?

- *Horizon-scale census of nearby black holes
- *Mass measurement calibration (~10% on M/D) — Mass or cosmology constraint
- *SBH mass function constraint, possibly its evolution
- *Accretion rate constraints from measured SED and BH mass
- *SBH growth mechanisms from measured BHMF evolution and accretion rates
- *Spin distributions

I. More single shadows How many?

Toward determining the number of observable supermassive black hole shadows

DOMINIC W. PESCE,^{1,2} DANIEL C. M. PALUMBO,^{1,2} RAMESH NARAYAN,^{1,2} LINDY BLACKBURN,^{1,2} SHEPERD S. DOELEMAN,^{1,2} MICHAEL D. JOHNSON,^{1,2} CHUNG-PEI MA,^{3,4} NEIL M. NAGAR,⁵ PRIYAMVADA NATARAJAN,^{6,7,2} AND ANGELO RICARTE^{1,2}

¹Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
 ²Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA
 ³Department of Astronomy, University of California, Berkeley, CA 94720, USA
 ⁴Department of Physics, University of California, Berkeley, CA 94720, USA
 ⁵Astronomy Department, Universidad de Concepción, Casilla 160-C, Concepción, Chile
 ⁶Department of Astronomy, Yale University, 52 Hillhouse Avenue, New Haven, CT 06511, USA
 ⁷Department of Physics, Yale University, P.O. Box 208121, New Haven, CT 06520, USA

I. More single shadows How many?

> Count BHs and require: - Resolvable ($\theta_r < \theta_{\rm shdw}$)

> > - Bright ($S_{\nu} > \text{SNR } \sigma_{\nu}$)

Optically thin emission at horizon

Ingredients:

SMBH mass function

- SED(BH mass, Accretion rate)

Accretion rate distribution

Ingredients: SMBH mass function

Number density per SBH Mass

 $\Phi(M,z) = \frac{dN}{dMdV}$

Provides number of resolvable shadows

BHMF from Shankar, Weinberg, Miralda-Escudé (2009) total 10⁸ $M < 10^{10} \mathrm{M}_{\odot}$ $M < 10^9 M_{\odot}$ $M < 10^8 M_{\odot}$ 10⁶ $M < 10^7 M_{\odot}$ $M < 10^{6} M_{\odot}$ $V(\theta > \theta_r)$ 104 10² 10⁰ 10^{-2} 100 10¹ 10^{-2} 10^{-1} 10² θ_r (µas) Pesce+2020

Ingredients: Spectral Energy Distribution (SED)

*Assume advection dominated accretion flows (ADAFs).

*Observationally motivated for low accretion rate systems.

*Quick computation via (modified) procedure from Mahadevan+1997

Ingredients: Spectral Energy Distribution (SED)

Requires specification of mass, accretion rate and frequency

 $\nu L_{\nu}(M, \dot{M})$

Provides specific flux at desired frequency and the optical depth to synchrotron self-absorption

Ingredients: Accretion rate distribution

Needed to evaluate the SED

 $\nu L_{\nu}(M, \dot{M})$

Uncertain low-Eddington tail

Number of resolvable shadows

Mass function + + Accretion rate dist. + SED + Sensitivity σ_{ν} + Resolution θ_r

->

- Number of SMBHs with:
 - * Flux > σ_{ν}
 - * Shadow > θ_r
 - * Optically thin emission

Number of resolvable shadowson a single baseline

One very long baseline can act like single base-line array

Longer baselines see lower flux density

 $S_{\nu}(1/\theta_r) = \text{SNR} \sigma_{\nu}$

Number of resolvable shadows ... for possible EHE mission

Based on calculation by M. Johnson

$$\sigma_{\rm G-S} = 0.1 \,\mathrm{mJy} \times \left(\frac{\theta}{6\,\mu\mathrm{as}}\right)^{-1} \left(\frac{\Delta t}{100\,\mathrm{s}}\right)^{-1/2} \left(\frac{D}{5\,\mathrm{m}}\right)^{-1} \left(\frac{D_{\rm gnd}}{50\,\mathrm{m}}\right)^{-1} \eta_{\rm sys}$$

100s integration, SNR=5 $S_{\nu}(1/\theta_r) = \text{SNR } \sigma_{\nu}$

Can we do better? Larger dish? Receiver/transmitter properties?

I. More single shadows? What could we learn?

*Horizon-scale census of nearby black holes — (>10's promising) — Jet connection?

*Mass or cosmology calibration (10% M/D) — (SNR dependent; z<0.1)

*SBH mass function constraint, possibly its evolution? (Via anchoring in nearby BH measurements)

*Accretion rate constraints from SED and BH mass? (For 10's)

*SBH growth mechanisms from measured BHMF evolution and accretion rates?

*Spin distributions?

*You tell me — let's talk!

Science Objectives:

* Black Hole Formation and Demographics

I. More single shadows What could we learn? How many could we detect?

II. More *than* single shadows Binaries?

EVENT HORIZON TELESCOPE

FINAL PARSEC TELESCOPE?

*Definitive evidence for SBHBs beyond 'final parsec'

*Also offers binary mass measurement assuming a cosmology ...or cosmology from a binary mass

D'Orazio & Loeb; *ApJ, 863,185 (2018)*

II. More than single shadows? How many Super Massive Black Hole Binaries?

Difference from single shadow estimates:

- Size: resolve optically thin emission on scale of orbit instead of horizon (min. orbital period for given mass)
- Timescale: observe over orbital period (yrs) timescales (max orbital period for all masses)
- Statistics: number density per orbit separation requires
 binary formation/evolution model

Extra/Different Ingredients:

- Binary orbital evolution model (assume simple gas + GW driven evolution)
- Flux from radio luminosity function scaled to ~300 GHz (not SED model) - optical depth from BK79 jet model

-Consistency with PTA GW background

D'Orazio & Loeb; ApJ, 863,185 (2018); arXiv: 1712.02362

II. More than single shadows? Super Massive Black Hole Binaries (on single baseline)

~1-1000 resolvable orbits over all sky for EHE capabilities

How to observe?

From D'Orazio EHE science Study

- Need targets: OJ 287 (10-20 μas , ~Jy), PG 1302 (4 μas , ~Jy)
 - + ~100 other SBHB candidates
- Clusters of observation over course of binary orbit
 - range of baseline orientations to detect double point source at different times over orbit

D'Orazio & Loeb; ApJ, 863,185 (2018)

II. More than single shadows? Super Massive Black Hole Binaries (on single baseline)

~1-1000 resolvable orbits over all sky for EHE capabilities

Further modelling

From D'Orazio EHE science Study

- Binary emission at 86-345+ GHz?
 - Binary evolution and constraints from GW obs. (PTAs)
- One-one comparison with single shadow estimates desirable

Summary

- ~10-1000 shadows resolvable with EHE-like mission
- * Would extend EHT science to horizon-scale demography
- Exciting possibility of resolving SBH Binary orbits with links to gravitational wave science and cosmology
- Promising! varying levels of uncertainty in population and detection modelling require further study

