Some lessons learnt from the SKA precursor large survey projects

Filippo Maccagni and Julia Healy

What data products we want for spectral line science

- Calibrated visibilities, (non-gridded, not averaged as much as possible)
 - keeping calibrated visibilities for a SKA MHONGOOSE survey (similar for MFS): 1500h, ~197 dishes, 32k channels at 1.6kHz resolution
 - Total observed data: ~50PB
 - Data to be stored: ~5PB
 - Manageable still on MeerGAS cluster located at ASTRON
- <u>At least for a limited time</u>: 1 year after observing?
 - As with every telescope
 - first years of observations will not provide the best quality data
 - it may be necessary to reprocess data
 - Re-observe means re-schedule projects delays
 - Conflict with 3-year contract projects/fellowships

Why

- Optimise the output of science projects, for which responsibility falls upon the astronomers and not the observatory or the SRC
- UV-Continuum subtraction of unknown HI sources
- Possibility of additional flagging
- Recover mistakes (i.e. ALMA pipeline) and/or additional processing
 - Lesson learnt from MHONGOOSE and MeerKAT Fornax Survey

Noise in the datacubes has always been as expected

BUT

u=0 problem

once reached low noise (<0.5 mJy) or rebinning to wide channels **horizontal artefacts** appeared in the datacubes

u=0 problem

III IIII KAT-7 (MeerKAT precursor) also noticed this problem (known in radio-interferometry) But the lesson learnt was lost

Maccagni et al (2022) - https://doi.org/10.48479/bhpj-nz95

What we would like the SRC to do for spectral imaging

- Continuum subtraction, spectral cleaning with masks
- <u>Generate datacubes</u> with the requested specs for the project's science goals
 - Different tapering / robustness
 - Adjust continuum subtraction in the uv-plane
- Most HI science goals will require datacubes at multiple resolutions.
- Field of view (from a fraction to several deg²) and bandwidth depends on the science goals of the different projects,
 - Maximum versatility

What do we need from the SRC

- Pipeline processing to obtain the best datacubes
 - a pipeline including all best data reduction algorithms and <u>all lessons learnt</u> from the SKA pathfinders and precursors
- <u>Source finding</u>:
 - enable different possibilities, i.e. ML based, SoFiA
- <u>Archive</u>
 - Easy access to HI datacubes and products ESO user Portal ?
 - Possibility of smoothing/rebinning already existing cubes.
 - Possibility of re-running source-finders.
- <u>Support scientists</u>
 - LOFAR, ALMA-Allegro

Hardware and Software environments

- <u>Ilifu:</u> 110 x 32 cpu nodes each with 232GB RAM, allows for short (and longer) term storage of data
- MeerGAS cluster: 4 x 128 cpu 40TB nodes each with 1000GB RAM, 1PB storage disk
- Existing software, may need to be scaled:
 - Pipelines
 - CARAcal (https://caracal.readthedocs.io/en/latest/)
 - Data analysis
 - SoFiA source finding (<u>https://github.com/SoFiA-Admin/SoFiA-2</u>)
 - Casatools/Casacore "easy" interaction with the measurement sets
 - Python environments (some standard, but also user-created and maintained), Jupyter notebooks
 - Visualisation
 - Carta & Kvis
 - iDaVIE (https://arxiv.org/abs/2012.11553)

Data visualisation

KVIS or CARTA

- KVIS limited by RAM as entire cube is loaded into memory
- CARTA not memory limited, but needs features added before it supersedes KVIS
- <u>IDaVIE-v</u> Virtual Reality software for visualising spectral line (or other 3D) data
 - Being developed in Cape Town (<u>https://idavie.readthedocs.io/en/latest/</u>)
 - Requires Windows environment as software based on gaming engines
 - Need enough RAM to load cubes, and GPU to power rendering
 - In the process of being updated to hosted on a cluster for remote access from the headset, requires 5GHz wireless connection
 - Can currently handle HI data cubes ~80Gb (MeerKAT Fornax Survey, Apertif MDS field)

Some final thoughts

- Support astronomers at the SRC
 - What is the SRC's role in helping to solve identified issues in the data?
 - Will the SRC operate as a "middle person" between data users and observatory, particularly if there are issues with the data that affect the science exploitation?
- Collaborating with other Regional Centres that already have the experienced personnel to build necessary tools?
- Who is responsible for quality control, making the call that the calibrated data is good enough for the science proposed?