

Lecture 9: Spectral line processing

CASA Common Astronomy Software Applications

OSSERVATORIO ASTROFISICO DI ARCETRI

Spectral line

× Maser

HI absorption

>8M

 \odot

Ingredients: hydrogen, helium, oxygen, carbon, neon, iron

 ~IM_{\odot}

Observation

SOURCES

SCHEDULING

Spectral resolution

Maser lines are narrow (at least 3 channels)

Central Frequency

Rest frequency of a particular maser

Müller+2004

Bandwidth

To include all the spectral features

SCHEDULING

SCHEDULING

Masers consist of core+halo

3ayandina+2020

55

(fr) file 120 80

45

VLSR (km/s)

Polarization

SCHEDULING

Different flux density in RCP vs LCP

Bayandina+2021

But data reduction is different

Both contain - all sources but with **different** spectral resolution

17

DATA REDUCTION

 \times EVN archive

SPLIT

width - N chan to average

× Smoothing

RFIs and strong spectral lines cause ringing across the frequency channels (the Gibbs phenomenon)

x2 lower spectral resolution

20

DATA REDUCTION

2 datasets = 1 continuum + 1 spectral line

× Flagging

Strong and narrow spectral lines are confused with RFI by automatic flagging algorithms

× Frequency -> Velocity

CVEL

```
field = 'target'
mode = 'velocity'
outframe= 'LSRK'
veltype= 'radio'
restfreq = XXX GHz
```


× Rate + Phase

× Phase

Inverse phase referencing

- Target is strong but the phase reference calibrator is too weak
- The phase of the target is transferred to the calibrator (not other way around)
- The measured offset of the phase ref calibrator is used to determine the position of the target

Line

× Self-calibration

The **self-calibration channel** must contain **a single point-like feature**

If the strongest channel shows double-structure, choose another channel (but still a strong one!)

Bandpass ×

- Important for auto-correlation spectra
- Amplitude only (phase)
- Calibrated on fringe-finder (bright continuum source) or

line-free channels of target source

Burns+2019 HartRAO 21/Aug/2017 16000 Simeiz 23/Aug/2017 HartRAO 2/Oct/2017 14000 Simeiz 2/Oct/201 EVN 2/Oct/2017 12000 10000 Flux density [Jy] 8000 6000 4000 2000 600 500 400 300 200 100 35 40 45 50 55

Velocity [km/s]

× Data cube

```
tclean
(vis='.ms',
 field='X',
 spw='X',
 specmode='cube',
 deconvolver='hogbom',
 start='0',
 nchan=XXX,
 outframe='LSRK',
 veltype='radio',
 restfreq='XXX MHz',
 imsize=[XXX],
 cell=['XXX'],
 weighting='briggs/natural',
 gridder='mosaic')
```


× Spot map

```
image = raw_input("Enter image name:")
sch = int(raw_input("Enter 1st channel:"))
fch = int(raw_input("Enter last channel:"))
nfch = fch + 1
for iii in range(sch,nfch):
imfit(
    imagename = image,
    box = '',
    chans = str(iii),
    stokes = 'I',
```

logfile = str(iii) + '.txt',

append = False)

41.5" 42.0" 42.5" 43.0" 43.0"

VLA data EVN data

VLA continuum

-5°59'41.0"

 18h34m20.95s
 20.90s
 20.85s
 20.80s
 35.0

 Right ascension

Burns+2019

55.0

52.5

50.0

47.5 (s/wk) 45.0 45.0

42.5

40.0

× Moments

```
immoments
(imagename='',
moments=[0],
axis='spectral',
region='',
chans='XX~XX',
includepix=[XX,XX],
outfile='',
stretch=False)
```


а

Declination (J2000)

The size of the compact maser emission feature can be studied based on the angular resolution and recovered flux density

× Poor uv coverage

RESOURCES

Some links to click

Tutorial AIPS(!)

AIPS Data Analysis Training

- Core philosophy of spectral line data reduction
- Can be translated to CASA with <u>AIPS-CASA Dictionary</u>

Tutorial AIPS(!)

Reducing EVN spectral line data

- Simple tutorial
- EVN OH maser data <u>EB063C</u>

EVN HI Spectral Line

- HI absorption data
- EVN data <u>NGC660.FITS</u>

Tutorial CASA

<u>ALMA guides</u>

- Compact array!
- + Imaging of a spectral line
- + Moment creation and basic image analysis

Maser database

A database and multi-purpose tool for analyzing maser data

Maser object G208.993-19.385

Other names: 05302-0537 (Ori KL), 053249.8-052507, KL IRC2, KL IRC 2, KL IRC 4, Ori KL, Orion-A, Orion-KL, 208.995-19.386, G208.996-19.386, Ori KL, Ori-KL, Orion KL, G208.99-19.38, G208.99-19.38(ORION-A), OMC-1, OMC-1 (25.0 GHz), OMC-1 (25.1 GHz), Orion, Orion-KL, Ori IRc2, ORION-IR.

Mean object RA, Dec: 05 35 14 -05 22 29 (83.8103330 -5.3748770) Mean object I, b: 208.9927 -19.3843

Detected/non-detected masers in the object: +H₂O +CH₃OH I +CH₃OH II +OH +SiO

× Find your source!

Tip: Gree	n is detection,									
Red is n	on-detection									
Hide/S	now individual ci	imponents								
H ₂ O mas	er observations	In object G2	08.993-1	9.385						
Line S	Source	Peak		Vpeak	Dist.	Веал	ΔV (km/s)	Ref		
22 GHz I	KLIRC 2	3000 Jy		5.5 km/s,	0.1" Go	7	20 1	[CES88]		
22 GHz H	KLIRC 4	3000 Jy		5.5 km/s,	8.4" Go	2		[CES88]		
22 GHz	053249.8-052507	84954 (5)	79) Jy	7.3 km/s,	60.6" Go	114"	0.33	[COD94]	90/02/05	
		7280 (86)	24		00.6" Go	114"				
	033245 8-002507	53684 (77	28) Jy		00.6" Go				90/10/27	
			878) Jy		00.0" Go				90/04/19	
		53848 (5)	79) Jy	7.3 km/s)	00.0" Go	114"			89/11/28	
		124580 (1	1204) Jy	7.3 km/s.	00.01 00	114"			90/07/15	
22 GHz I	KL IRC2	Image		9.00 km/s	0.5" Go	2		[FEL07]		
22 GHz (Dri KL	86080 Jy	Image	7.3 km/s,	0.1" Go	114"	0.33	[FEL92]	900205	
22 GHz (05302-0537 (Orl	KL) 1450 Jy I	mage	8 km/s,	0.2" Go	?		[MIG99]	1996 Jun	e, Octo
22 GHz H	KLIRC 2	248300.0	Jy	7.5 km/s,	0.1" Go	114"	0.33	PAL93B	1	
22 GHz (Drion-A	a=0.230 .	by .		8.6" Go	73"	0.5	SUN07	30.05.200	15
22 GHz (Driton-A	2875.8 Jy	(12 B knvs	8.0° Go	73"	0.5		30.05.200	0
	Drion-A	2300.46	19	7.7 km/s;	8,0" Go	73*	0.5		25.09.200	14
22 GHz	Drion-KL	15450.13	y Image	10.6 km/s	9.0" Go	138"		[wnaal	1997 08 1	11
OH mase	r observations i	n object G20	8.993-15	.385						
Line	Source	Peak Vpeak	Dist	. Beam	AV Re	r i				
4000 MH	Z ORION-IR	14.4 k	m/s. 3.0	Go 7	IG	M83: 0	01A141			
0035 MHz (5208 99,19 38		0.290 4.7"		60 2	50 7 ICV95: OIAL					
					-					
SIO mas	er observations	In object G20	08.993-1	9.385						
Line	Source Peak	Vpeak I	Dist. I	Beam (km/	Ref					
J=1-0 v=	1 Orl IRc2 240 K	-5 km/s,	1.0' Go	2	[NRO_I	st; NR	9			
	Orl IRc2 1110 J	y 16.2 km/s, i	0.8" Go	7	[JEW91	ENG	SIO			
снзон і	maser observat	ions in object	t G208.1	93-19.385						
Line	Source		Peak		Vpeak		D	ist. B	cam AV Ref	
							_	~	(km/s	
9.93 GHZ Onon-KL			0.25 (0.04) Jy		8.7 (0.2) km/s,		5, 3,	0.00 2	04.	ESLY93
0.07 GH	Conort-KL		-0.110				3.	0 00 2	0.47	Lar Yas
10.08.01										

maserdb.net

M2O: Maser Monitoring Organisation

A global community for maser-driven astronomy

- monitoring stations report new maser flares ->
- confirmation by other radio observatories ->
- follow up VLBI and IR observations

Want to join? masermonitoring.org

THANKS

Do you have any questions?

olga.bayandina@inaf.it masermonitoring.com

This event has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004719.

O.B. acknowledges financial support from the Italian Ministry of University and Research - Project Proposal CIR01_00010.

