

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

The University of Manchester

Lecture 11 - Wide-field data processing

CASA VLBI 2023 - 08/06/2023

Wide-field VLBI - definition

What do we mean by wide-field VLBI?

- Simply concerned with *imaging the entire primary beam of a* VLBI array
- See multiple science targets in one observations
- Historically, much easier for shorter baseline instruments

What are the advantages of imaging the entire primary beam?

Primary beam corrected JVLA+MERLIN image of the GOODS-N field

CASA VLBI 2023 – L11 wide-field data processing – 08/06/2023

redit: N. Wrigley

Outline

- 1. Why image the whole primary beam?
- 2. Challenges
- 3. Wide-field correlation
- 4. Self-calibration
- 5. Direction-dependent calibration
- 6. Calibrating wide-field data with VPIPE

AGN identification / feedback

- Independent of multi-wavelength data!

VLA - low resolution

• In distant galaxies (z > 0.1), a VLBI detection = high brightness temperature cores (>10⁵ K) = AGN!

VLBI - high resolution

E.G., KEWLEY ET AL., (2000); MIDDELBERG ET AL., (2013); RADCLIFFE ET AL. 2018

AGN identification / feedback

- Independent of multi-wavelength data!

VLA - low resolution

• In distant galaxies (z > 0.1), a VLBI detection = high brightness temperature cores (>10⁵ K) = AGN!

VLBI - high resolution

E.G., KEWLEY ET AL., (2000); MIDDELBERG ET AL., (2013); RADCLIFFE ET AL. 2018

Supermassive black hole binaries

HST near-IR (F125W)

HST GRISM spectrum O[III] line

Supernovae

- $z \sim 0.07$ host with pt. source emission appearing between 1996 & 2000
- Luminosity consistent with LLAGN or supernovae ($5 \times 10^{22} \,\mathrm{W \, Hz^{-1}}$)

CASA VLBI 2023 – L11 wide-field data processing – 08/06/2023

Nearby galaxies and our Galaxy

VLA + e-MERLIN

SEE ALSO MORGAN ET AL., (2016); RAMPADARATH ET AL., (2015, 2016)

7/44

Gravitational lenses

- Rare (~0.3% of VLBI sources)
- Independently measure the sub-structure massfunction within galaxies.
- High resolution of VLBI can constrain lens models
- Wide-field VLBI can find more of these lenses (see below from mJIVE-20 VLBI survey)

Aside - the radio interferometer measurement equation (RIME)

• Recap of the **Radio Interferometry Measurement Equation** (RIME) for antennas p and q,

HAMAKER ET AL., (1996); SMIRNOV ET AL., 2011

Imaging the entire primary beam - challenges Image sizes

- Assuming ~0.5 degree field-of-view (25m) telescopes at 1.4 GHz) w/ 3x PSF sampling
 - Very Large Array (VLA) A-configuration (1.4" resolution) - $\sim 1.4 \times 10^7$ pixels
 - Very Long Baseline Array (VLBA) (~6 mas resolution) - $\sim 1 \times 10^{11}$ pixels

JACK F. RADCLIFFE (jack.radcliffe@up.ac.za)

2. Non-coplanarity or the *w* term

e-MERLIN - source 7.5' from pointing centre

Imaging the entire primary beam - challenges Ideal radio interferometer measurement equation $V(u, v) = \left\{ \int_{U} B(l, m) \exp\left\{-2\pi i \left[ul + vm + w \left(n - 1\right)\right]\right\} \frac{dldm}{n} \right\}$ $n = \sqrt{1 - l^2 - m^2}$

- The pesky extra term of: $\frac{1}{n} \exp \left[w \left(n - 1 \right) \right]$ stops us having a true 2D-FT
- Solving requires calculating and implementing convolutional product. Relatively more computationally expensive

3. Smearing

RIME

$$\mathsf{V}_{pq} = \iint_{l,m} \mathsf{B}(l,m) \exp\left\{-2\pi i \left(u_{pq}l + v_{pq}m + w_{pq}(n-1)\right)\right\}$$

• Caused by averaging of the data in time and frequency (loss of coherence)

Imaging the entire primary beam - challenges 3. Smearing

'Post-correlation' RIME

$$\left\langle \mathsf{V}_{pq} \right\rangle = \frac{1}{\Delta t \Delta v} \iint_{t_0, v_0}^{t_1, v_1} \left[\iint_{l, m} \mathsf{B}(l, m) \exp\left\{ -2\pi i \left(u_{pq} l + v_{pq} m + v_{pq$$

• Caused by averaging of the data in time and frequency (loss of coherence)

Standard wide-field correlation

Field-of-view due to smearing

- Correlate at high temporal & frequency resolution to restrain smearing
- *Result* one huge data set which is 99.9999% noise
- This huge single data set is often TBs* in size
- Often have to shift to different positions which is inaccurate using standard software.

*Note a 22 telescope, 12 hour EVN observation @ 1 Gbps ~ 10 TB

Multiple phase-centre correlation

- 1. Split data into time chunks
- 2. Correlate each chunk at very high time & frequency resolution to prevent smearing
- 3. Copies & phase shift to multiple locations in primary beam
- 4. Average in time & frequency

Result - you receive lots of small (in FoV and size) data sets at different positions across the primary beam so it's easily parallelisable!

• Choice of phase centres is up to the user and could cover entire primary beam, or just some known sources of interest e.g. VLA positions etc.

Multiple phase-centre correlation

- 1. Split data into time chunks
- 2. Correlate each chunk at very high time & frequency resolution to prevent smearing
- 3. Copies & phase shift to multiple locations in primary beam
- 4. Average in time & frequency

Result - you receive lots of small (in FoV and size) data sets at different positions across the primary beam so it's easily parallelisable!

• Choice of phase centres is up to the user and could cover entire primary beam, or just some known sources of interest e.g. VLA positions etc.

Multiple phase-centre correlation

- 1. Split data into time chunks
- 2. Correlate each chunk at very high time & frequency resolution to prevent smearing
- 3. Copies & phase shift to multiple locations in primary beam
- 4. Average in time & frequency

Result - you receive lots of small (in FoV and size) *data sets at different positions* across the primary beam so it's easily parallelisable!

• Choice of phase centres is up to the user and could cover entire primary beam, or just some known sources of interest e.g. VLA positions etc.

MORGAN ET AL., (2011); DELLER ET AL., (2011); KEIMPEMA ET AL., (2015)

Multiple phase-centre correlation

- 1. Split data into time chunks
- 2. Correlate each chunk at very high time & frequency resolution to prevent smearing
- 3. Copies & phase shift to multiple locations in primary beam
- 4. Average in time & frequency

Result - you receive lots of small (in FoV and size) *data sets at different positions* across the primary beam so it's easily parallelisable!

• Choice of phase centres is up to the user and could cover entire primary beam, or just some known sources of interest e.g. VLA positions etc.

MORGAN ET AL., (2011); DELLER ET AL., (2011); KEIMPEMA ET AL., (2015)

Multiple phase-centre correlation

- 1. Split data into time chunks
- 2. Correlate each chunk at very high time & frequency resolution to prevent smearing
- 3. Copies & phase shift to multiple locations in primary beam
- 4. Average in time & frequency

Result - you receive lots of small (in FoV and size) *data sets at different positions* across the primary beam so it's easily parallelisable!

• Choice of phase centres is up to the user and could cover entire primary beam, or just some known sources of interest e.g. VLA positions etc.

MORGAN ET AL., (2011); DELLER ET AL., (2011); KEIMPEMA ET AL., (2015)

Phase referencing

- Typically, one phase centre will contain the phase, bandpass and fringe finders sources.
- Most importantly standard VLBI phase referencing applies
- Calibration tables & flagging tables derived can then be applied to ALL other target fields
- Easily parallelisable so calibration is very quick

Phase referencing **Calibration tables**/ solutions **Other phase**

centres

15/43

- Typically, one phase centre will contain the phase, bandpass and fringe finders sources.
- Most importantly standard VLBI phase referencing applies
- Calibration tables & flagging tables derived can then be applied to ALL other target fields
- Easily parallelisable so calibration is very quick

Self-calibrating wide-field VLBI data

- Atmospheric effects correlated on short baselines **but not** on longer baselines
- Often uncorrelated at different locations within the target field too...
- Also, the number density of VLBI sources (and their flux densities) lower due to the 'resolving out'/ spatial filtering effect.

In-beam phase referencing / self-calibration

- Put a phase-centre on a bright source within the target field and use this to derive self-calibration solutions.
- Then, apply solutions to all other phase centres.
- However, only some target fields have bright enough VLBI sources \rightarrow limits the number of fields

WROBEL ET AL. 2000, GARRETT ET AL. 2005

In-beam phase referencing / self-calibration

- Put a phase-centre on a bright source within the target field and use this to derive self-calibration solutions.
- Then, apply solutions to all other phase centres.
- However, only some target fields have bright enough VLBI sources \rightarrow limits the number of fields

WROBEL ET AL. 2000, GARRETT ET AL. 2005

- So how does it work?

• Use combined response (via *uv* stacking) of detected target sources to derive self-calibration solutions.

MIDDELBERG ET AL., (2013); RADCLIFFE ET AL., (2016)

- So how does it work?

• Use combined response (via *uv* stacking) of detected target sources to derive self-calibration solutions.

MIDDELBERG ET AL., (2013); RADCLIFFE ET AL., (2016)

- So how does it work?

• Use combined response (via *uv* stacking) of detected target sources to derive self-calibration solutions.

MIDDELBERG ET AL., (2013); RADCLIFFE ET AL., (2016)

- So how does it work?

Copy, model, uv divide, combine & stack

• Use combined response (via *uv* stacking) of detected target sources to derive self-calibration solutions.

MIDDELBERG ET AL., (2013); RADCLIFFE ET AL., (2016)

- So how does it work?

Derive selfcalibration solutions

• Use combined response (via *uv* stacking) of detected target sources to derive self-calibration solutions.

MIDDELBERG ET AL., (2013); RADCLIFFE ET AL., (2016)

- So how does it work?

• Use combined response (via *uv* stacking) of detected target sources to derive self-calibration solutions.

- So how does it work?

• Use combined response (via *uv* stacking) of detected target sources to derive self-calibration solutions.

Image phase centres again (& repeat process if

MIDDELBERG ET AL., (2013); RADCLIFFE ET AL., (2016)

Standard phase referencing

S/N ~ 43

- Code publicly available for AIPS <u>https://github.com/jradcliffe5/multi_self_cal</u>
- CASA version in beta as part of VPIPE (see later)

MSSC S/N ~ 113

MIDDELBERG ET AL., (2013); RADCLIFFE ET AL., (2016)

MSSC - not just for wide-field data sets

- Standard VLBI targets just a small FoV in the centre that may not provide enough S/N for selfcalibration, but there's other radio sources in the FoV.
- Use multiple phase centre correlation on other potential sources in the primary beam
- Then you may have enough S/N to self-calibrate VLBI data-set
- Plus you may find something interesting...

VLBI primary beam

Direction-dependent effects

• To the RIME, we had the corrupting effects being parameterised as a Jones chain:

$$V_{pq} = \iint_{lm} J_p \frac{\mathsf{B}(l,m)}{n} \exp\left\{-2\pi i \left[u_{pq}l + v_{pq}m + w_{pq}(n-1)\right]\right\} J_q^H \,\mathrm{d}l\mathrm{d}m$$
$$V_{pq} = \iint_{lm} J_p K_p \mathsf{B}(l,m) K_q^H J_q^H \,\mathrm{d}l\mathrm{d}m$$

• Can be split into direction-independent (G) and direction-dependent effects, DDEs (E = E(l, m))

$$\mathsf{V}_{pq} = \mathbf{G}_{p} \left(\iint_{lm} \mathbf{E}_{p} K_{p} \mathsf{B}(l,m) K_{q}^{H} \mathbf{E}_{q}^{H} \mathrm{d}l \mathrm{d}m \right) \mathbf{G}_{q}^{H}$$

- cause errors. Most are calibrated away through observational design / strategies (e.g., phase referencing).
- Some are not, and can change over your field-of-view...

• These *E* terms causes your interferometer to effectively 'see' a different sky on each baseline and can

Primary beams

- Primary beams are the most ubiquitous direction dependent effect (DDE) that affects all wide-field radio observations.
- For small sized images, delay centre = primary beam maxima so often no need to correct!
- For large images, we need to deal with this attenuation.
- More of a problem for heterogeneous arrays (i.e. most VLBI arrays) as we shall see next.

Knockin primary beam holographic scan

Homogeneous arrays

- Assume DIEs (G) are calibrated and no other DDEs are present so E are just the primary beam voltages.
- For an homogeneous array (e.g., MeerKAT, VLA, ASKAP etc.), a standard assumption is that the primary beam for each telescope is identical ($E_p = E_q = E$ for all p, q) and non-varying with time so $E(t, l, m) \equiv E(l, m).$
- This means that each baseline observes the same apparent brightness distribution thus, $B_{app} = EBE^{H}$

• Standard imaging algorithms recover an image by assuming that each baseline observes the same apparent brightness distribution / common sky. Due to this, all of the baselines can be gridded so their projected baseline vectors form the uv plane,

$$V(u, v) \approx \iint_{lm} B_{app} \exp\left\{\right\}$$

$$-2\pi i \left[ul + vm + w(n-1) \right]$$
 d*l*dm

Homogeneous arrays

- This is our standard imaging problem and can gridded, inverted, and de-convolved to recover B_{app}.
- We can then recover the true sky brightness distribution via,

$$\mathsf{B}(l,m) = \frac{\mathsf{B}_{app}}{|\boldsymbol{E}(l,m)|^2}$$

- Images generated will simply be the true brightness attenuated by some power beam
- Thus the true source flux density can be recovered by dividing the image with the power beam response.

Homogeneous arrays

- This is our standard imaging problem and can gridded, inverted, and de-convolved to recover B_{app}.
- We can then recover the true sky brightness distribution via,

$$\mathsf{B}(l,m) = \frac{\mathsf{B}_{app}}{|\boldsymbol{E}(l,m)|^2}$$

- Images generated will simply be the true brightness attenuated by some power beam
- Thus the true source flux density can be recovered by dividing the image with the power beam response.

Heterogeneous arrays

• Not so simple for a heterogeneous array. Big issue comes from the following,

$$\mathsf{B}_{\operatorname{app},pq} = \mathbf{E}_p \mathsf{B} \mathbf{E}_q^H \neq \mathsf{B}$$

- i.e. each baseline does not observe the same apparent brightness distribution
- This manifests as a direction-dependent, antenna independent, and dominant, amplitude (and phase...) error. \rightarrow

RADCLIFFE/COETZER ET AL., (IN PREP.)

for all *p*, *q* app, pq

Primary beam correction schemes

- With beam models / approximations of the primary beam, how do we apply these corrections for heterogeneous arrays (and wide-field VLBI data)?
- Currently three ways,
 - A. Image plane correction (primarily homogeneous arrays only)
 - **B.** 'Differential' / step-wise primary beam correction
 - C. *uv*-plane correction i.e. *a*-projection

A. Image plane correction

• Can calculate total power beam, $P_{\rm T}$, for heterogeneous array via,

and divide subsequent image by $P_{\rm T}$.

- Provides a scalar shift in the image plane (partially fixing flux densities) but does not correct for the direction-dependent antenna independent errors.
- You can fix amplitude errors for some sources via self-calibration but crucially not all.

JACK F. RADCLIFFE (jack.radcliffe@up.ac.za)

Heterogeneous array

B. 'Differential' / step-wise primary beam correction

Effectively does the following to each baseline,

$$V_{pq,obs}(l_{pc}, m_{pc}) = \frac{1}{E_p(l_p)}$$

- Note that this only 'perfectly' corrects amplitude errors at centre of each phase centre.

• Correct each phase centre in *uv* plane using **CASA complex gain table** with a singular value for each antenna's primary beam voltage, evaluated at centre of the phase centre (where $l = l_{pc}$ and $m = m_{pc}$).

V_{pq,obs}

 $(l_{\rm pc}, m_{\rm pc}) \boldsymbol{E}_a^H(l_{\rm pc}, m_{\rm pc})$

• (Sometimes conducted) \rightarrow outside of the phase centre centre, calculate error difference between real primary beam response and uv corrected response, and correct in the image plane to recover true fluxes.

• Residual amplitude errors proportional to $\nabla \left| E_p E_q^H \right|$, distance from centre of phase centre & primary beam model errors **but errors are much, much smaller** than image plane only correction!

- For VLBA AIPS task **CLVLB**
- For EVN https:// github.com/ jradcliffe5/ EVN_pbcor (Radcliffe+18, Keimpema & Radcliffe in prep.)
- CASA implemented in VPIPE.

B. 'Differential' / step-wise primary beam correction

VLBI studies.

C. a-projection

*Same 12 hour simulated EVN observation (central rms ~ 4 μ Jy beam⁻¹)

- New method corrects for primary beam response while gridding visibilities.
- Implemented in the Image Domain Gridder (IDG) as part of the wsclean imaging package (not CASA).
- Will correct for primary beam effects with smaller error than other methods.
- Method can also implement:
 - More complex beams (e.g., true frequency dependence - i.e. not $1/\lambda$, beam rotation of sidelobes, beam squints)
 - And other direction-dependent effects (e.g. pointing errors, TEC dispersion etc.)

C. a-projection

- New method corrects for primary beam response while gridding visibilities.
- Implemented in the Image Domain Gridder (IDG) as part of the wsclean imaging package (not CASA).
- Will correct for primary beam effects with smaller error than other methods.
- Method can also implement:
 - More complex beams (e.g., true frequency dependence - i.e. not $1/\lambda$, beam rotation of sidelobes, beam squints)
 - And other direction-dependent effects (e.g. pointing errors, TEC dispersion etc.)

Wide-field imaging / w-term

• Other direction dependent effect is the non-coplanar term (or the *w*-term),

$$V(u, v, w) = \iint_{lm} \frac{B(l, m)}{n} \exp\left\{-2\pi i \left[ul + vm + w \left(n - 1\right)\right]\right\} dldm$$

$$\rightarrow V(u, v, w) = \iint_{lm} W B(l, m) \exp\left\{-2\pi i \left[ul + vm\right]\right\} dldm \text{ where}$$

- 3D visibility function V(u, v, w) can be transformed into a 3D image volume B(l, m, n) but non-physical as only *l*, *m* are directional cosines (i.e., 2D)
- Our lovely 2D Fourier transform now does not hold...

 $W = (1/n) \exp \left| w(n-1) \right|$

Wide-field imaging - 3D to 2D

- The only non-zero values of (l, m) lie on the surface of a sphere of unit radius defined by $n = \sqrt{1 - l^2 - m^2}$
- The sky brightness consisting of a number of discrete sources \swarrow are transformed onto the surface of this sphere.
- The two-dimensional image 🔀 is recovered by projection onto the tangent plane at the pointing centre

How do we achieve this?

- 1. Faceting split field into multiple projected images and stitch together
- 2. Deal with the *w*-term directly (deal with the distortion when imaging)

1. Faceting

• Oldest method in the book - takes advantage of small-field approximation ($l, m \rightarrow 0$) so $W \sim 1$ so our image sphere is approximated by pieces of smaller tangent planes.

Result \rightarrow each sub-field can use the standard 2D FFT!

- Errors increase quadratically away from centre but ok if enough sub-fields are selected
- Facets can be chosen to cover known sources or overlap to complete coverage of primary beam

'facet' images!

Important: multi-phase centre correlation experiments effectively does this! Only need to make small

2. Dealing with w directly

- Other algorithms allow you to deal with the *w*-term directly when imaging (to produces a contiguous) image). Examples include w-stacking and w-projection (shown next).
- To return the visibility equation to a 2D Fourier transform, the *w*-projection algorithm convolves the visibilities with the *w*-term i.e.,

$$V(u, v, w = 0) * \mathfrak{F}\left(\exp\left[-2\pi i w (n-1)\right]\right) = \iint_{lm} \frac{\mathsf{B}(l, m)}{n} \exp\left[-2\pi i (ul + vm)\right] dl dm$$

on zenith angle, coplanarity of array and FoV.

- Dependent igie, coplanaity of anay
- Deconvolution assumes constant PSF but PSF slightly changes over the image so **Cotton-Schwab** algorithm automatically used to correct for this.

Result of correcting for *w*

e-MERLIN - source 7.5' from pointing centre

• Result:

Other direction dependent effects

- Other DDEs includes tropospheric / ionospheric corruptions across FoV, pointing errors etc etc.,
- Need specialised software (e.g., killMS, DDFacet) normally. Not in CASA...

DDE facet calibration in LOFAR

VLBI pipeline (VPIPE)

- VLBI PIPEline (VPIPE) based in CASA v6.5+ (currently at v1.0) <u>https://github.com/jradcliffe5/</u> VLBI_pipeline - Nb. it's modular so works with other pipelines e.g., (rPICARD; see Janssen lecture!).
- Currently does the following,
 - A priori calibration for EVN & VLBA data (e.g. $T_{\rm sys}$, gaincurves, ionospheric dispersive delays)
 - Fully parallelised a priori, flagging, phase referencing, and self-calibration via casampi (continuum only at the moment)
 - Support for use on HPC clusters controlled by SLURM / PBS Pro (+ usable on local machines)
 - Built for wide-field VLBI surveys, but direction-independent calibration works for normal data too.
- Wide-field features:
 - Primary beam correction
 - Multi-source self-calibration (and direction dependent calibration too)
 - Parameter automation (e.g., source finding, calibration solution intervals etc.)

Example VPIPE run for wide-field EVN data

Surveys using VPIPE

SPARCS-N wide-field VLBI survey

NJERI ET AL., (2023)

VLBA-CANDELS GOODS-N survey

DEANE ET AL., (SUBMITTED)

With these advancements...

We went from this 23 years ago,

KPNO (OPTICAL) + WSRT (RADIO) 62 14 04 J123646+621404 62 17 [|] 12 36 46.35 J123642+621331 62 13 31.50 12 36 42.10 0 12 37 30 00

GOODS-N Deep Field

GARRETT ET AL., (2000)

... to ...

Observed 19 years

ago

JACK F. RADCLIFFE (jack.radcliffe@up.ac.za)

CHI ET AL., (2012) / OBSERVED 2004

And finally!

Key takeaways

- Wide-field VLBI has many use cases and could be useful to your science.
- Calibration is simple and additional steps easily parallelised (and becoming userfriendly!)
- Additional calibration techniques required for wide-field observations e.g., MSSC, primary beam corrections but are all available (and easy to use)

RADCLIFFE ET AL., (2018)

Questions?

This event has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004719

Job Opportunities in South Africa!

- Three postdoctoral positions (2+1 yr matched to SARAO) available in VLBI at Pretoria (contact me!). • PhD, MSc positions available for 2024 under SARChI research chair (contact John McKean;
- mckean@astro.rug.nl)

