rPicard and mm-VLBI

CASA VLBI workshop, June 2023 @JIVE **Michael Janssen**

Max-Planck-Institut für Radioastronomie

MAX-PLANCK-GESELLSCHAFT

mm VLBI

- Q-band to highest EHT frequency.
- 43 345 GHz.
- 7 0.87mm.

EHT

- 214, 228, 253, 267, 336, 348
 GHz (not simultaneous).
- 15 µas.

GMVA

- 86 GHz.
- 56 µas.

KVN

- 22 + 43 + 86 + 129 GHz.
- 1 mas.
- Drives multi-band receiver development.

-150

EHT Collaboration et al. 2022, ApJL, 930, L12-L17

mm VLBI challenges

Reflective telescope dishes with excellent surface accuracies needed
 → Collecting areas are typically small!

mm VLBI challenges

- Reflective telescope dishes with excellent surface accuracies needed → Small collecting areas
- 2. Troposphere: The water vapor problem
 - a. Short (~seconds) coherence times due to atmospheric turbulence
 - b. Emission \rightarrow larger SEFDs (+ large receiver noise)
 - c. Absorption \rightarrow source signal attenuated
- To (partially) counter atmosphere: Must be on high and dry site & have good weather → sparse arrays!

mm VLBI challenges

- Reflective telescope dishes with excellent surface accuracies needed → Small collecting areas
- 2. Troposphere: The water vapor problem
 - a. Short (~seconds) coherence times due to atmospheric turbulence
 - b. Emission \rightarrow larger SEFDs (+ large receiver noise)
 - c. Absorption \rightarrow source signal attenuated
- To (partially) counter atmosphere: Must be on high and dry site & have good weather → sparse arrays!

What it means in practice

- Typically, you have sparser and noisier data → Watch out for imaging artefacts, maybe use new ~MEM algorithms
- No phase-referencing
 → Must fringe-fit the target:
 - ≥ 10 100 mJy compact flux density
 - ⇒ Except: In-beam phase-referencing& multi-freq receivers

(Also note limits of phased arrays like ALMA: ≥ 750 mJy or passive phasing at 345 GHz)

How you can do it: rPICARD

- Janssen et al., A&A, 626 (2019) A75, <u>https://bitbucket.org/M_Janssen/picard</u>
- No lengthy process of setting parameters and running tasks manually.
- Open source & scientific reproducibility.
- Built-in MPI acceleration for all tasks.
- Low barrier to entry.
- 57 pages of documentation.
- Works for any VLBI array. Note also VPIPE from previous talk: <u>https://github.com/jradcliffe5/VLBI_pipeline</u>
- Many diagnostics to inspect. Easy to adjust strategy and re-run steps.

calibrators instrphase = 3C279, NRA0530 calibrators bandpass = 3C279 calibrators rldly = 3C279 calibrators dterms = None calibrators_phaseref = None phaseref ff science = False

spectral line = False

Installing rPICARD

- git clone https://bitbucket.org/M_Janssen/picard
- ./picard/setup.py -p <path/to/your/CASA/installation>
- printf '\nexport PATH=\$PATH:'"\$(pwd)"'/picard/picard\n' >> ~/.bashrc
- printf '\nexport PYTHONPATH=\$PYTHONPATH:'"\$(pwd)"'/picard/picard\n' >> ~/.bashrc
- (optional) Install <u>https://github.com/haavee/jiveplot</u> and/or <u>https://sylabs.io/singularity</u> and add it to your path

 Or run containerized within Singularity/Docker: <u>https://bitbucket.org/M_Janssen/picard/src/master/README.md</u>

Setting up rPICARD

- Create a clean working directory and link input data there
 - Link (ln -s) to FITS-IDI, ANTAB, and (for mm VLBI) weather/wx files
 - Add optionally: flag txt file, t_rec/t_rx txt file, source models
- cp -r /path/to/installation/picard/input_template/ input

michael@mjpc:~/Software/Bitbucket_repos/Picard/testing\$ ls <mark>3C84.smodel</mark> example.antab example_EVN.IDI1 example.flag example.trx **input**

- Minimally set parameters in input/observation.inp and input/array.inp:
 - Names of science target(s) and calibrators.
 - Name of the array (EVN, VLBA, GMVA, ...) and list of reference antennas.

Running rPICARD

• cd /path/to/working/dir && ls

michael@mjpc:~/Software/Bitbucket_repos/Picard/testing\$ ls <mark>3C84.smodel</mark> example.antab example_EVN.IDI1 example.flag example.trx **input**

 \Rightarrow picard -p

• Some further examples

picard -l e picard -pq h,i,k picard -n 4 -pq 4 Load data, write listobs, exit <

Plot the uncalibrated data -

Run only step 4 using 4 cores

Check data before setting input and running full pipeline

Step-by-step reduction of mm VLBI data following rPICARD

- 1. Pre-calibration:
 - a. Gather and process metadata (see Mark's lecture on Tuesday)
 - b. Load the data into a MeasurementSet
 - c. Load source models
 - d. Flag bad data

2. Calibration steps:

- a. Flux density
- b. Fringe-fit & phase calibration of calibrator sources
- c. Solve instrumental effects
 - i. Align spws, bandpass, align correlation products (RL phase+delay)
- d. Fringe-fit science targets over VLBI scans, combine correlation products for max S/N
- e. Residual fringe-fit science targets with narrow windows and tuned solution intervals
- 3. Post-calibration:
 - a. Apply calibration solutions
 - b. Plot the calibrated data
 - c. Export averaged data as MS and UVFITS

Amplitude calibration

Accor & scalar bandpass (step 0, 1)

7mm VLBA data of M87. Project code: BW0106.

Tsys calibration (step 2, 3)

7mm VLBA data of M87. Project code: BW0106.

Phase calibration

Intra-scan exhaustive fringe search

- A₀, B₀, C₀, D₀ list of prioritized reference stations.
- Green : detection.
- Red: Non-detection.
- D_0 and d_1 still un-calibratable.
- b_1, C_0, c_i calibratable via re-referencing.

Solution interval estimation per ant/scan (step 4)

• Can calibrate stations with sensitive baselines on short timescales and still get detections on longer timescales for baselines with weak signals.

Some 1mm EHT data

Coherence calibration (step 5)

Atmospheric phase stabilization

Some EHT data (1mm). Plots made with jiveplot!

Instrumental phases and delays (step 6)

Per-spw fringefit

_ _______________________

Some EHT data (1mm). Plots made with jiveplot!

Multi-band fringe & complex bandpass (steps 7,8)

• Redo coher cal with aligned spws to solve for multi-band delays. Phase-only bandpass.

7mm VLBA data of M87. Project code: BW0106.

Last calibration steps: fringe-fit science targets (steps 12, 13, 14)

- First: long integration (entire scan) to take out bulk delay or rate with maximized SNR.
 - \rightarrow Source detected or not?

Typically with open FFT search windows. Over aligned spws and correlation products (pols after RL phase+delay).

- Then: Use narrow windows (small false detection probability) to solve for residual intra-scan atmospheric effects on short timescales.
 - \rightarrow Using optimized solution intervals.

Last calibration steps: fringe-fit science targets

7mm VLBA data of M87. Project code: BW0106.

Last calibration steps: fringe-fit science targets (steps 12, 13, 14)

- First: long integration (entire scan) to take out bulk delay or rate with maximized SNR.
 - \rightarrow Source detected or not?

Typically with open FFT search windows. Over aligned spws and correlation products (pols after RL phase+delay).

- Then: Use narrow windows (small false detection probability) to solve for residual intra-scan atmospheric effects on short timescales.
 - \rightarrow Using optimized solution intervals.
- Note difference with other rPICARD modes.
 - No fringe-fit on science target or only search for residuals in <u>phase-referencing</u> mode.
 - No fit for delay in <u>spectral line</u> mode on science target.
 - Longer adaptive solution intervals for longer observing wavelengths.

New vs old

Kim et al., in prep. 180 **AIPS** 120 Phase (°) 60 -60 -120 (A) -180 180 rPICARD 120 Phase (°) 60 1 -60 -120 (B) -180 3.0 0.5 1.0 1.5 2.0 2.5 0.0 UV-radius (G λ)

Kim et al., in prep.

10¹

100

10-1

10-2

Backup slides

rPICARD calibration: determine reference stations for global fringe-fit

- Two input parameters
 - List of prioritized reference stations, e.g. EF, YS, MC, NT.
 - Minimum fraction of valid (unflagged) data that must be present in a scan χ .
- For each scan, the first antenna in the refant list with valid data > χ is picked as refant for that scan.
- If all valid data fractions $< \chi$, the antenna with the most valid data is picked.
- X should be small for polarization experiments and/or when a single very sensitive station is present in the array (e.g., ALMA).
- In the end all fringe solutions are re-referenced to one common antenna over the entire experiment for phase stability.

rPICARD calibration: fringe-fit calibrators -solution interval estimation

- Fringe-fitting can be used to calibrate for intra-scan atmospheric effects on short timescales.
- A source is detected when the SNR of the initial FFT is high enough. The more detections per scan, the better the atmospheric calibration.
- Input parameter: Search range depending on array sensitivity and observing frequency.
- For each scan, the solution interval which yields the most detections on all baselines is used.
- Can calibrate sensitive baselines on short timescales and still get detections on longer timescales for baselines with weak signals.