

Very Long Baseline Array (and ngVLA) George Moellenbrock, NRAO (Anna Kapinska, Frank Schinzel, Walter Brisken, Eric Murphy)

VLBA Interferometer

VLBA antennas are spread across USA with the longest baseline between Hawai'i and St Croix locations.

- \rightarrow 10 antennas, with longest baseline 8,611km (5,350mi)
- \rightarrow each location has one antenna
- \rightarrow no configurations as such, but free selection of dishes
- → frequency coverage 0.3 GHz - 96 GHz (90 cm - 3 mm)→ resolution 0.17 - 22 mas

(Kapinska, Schinzel)

Connact Coours Mahility Client

VLBA Interferometer

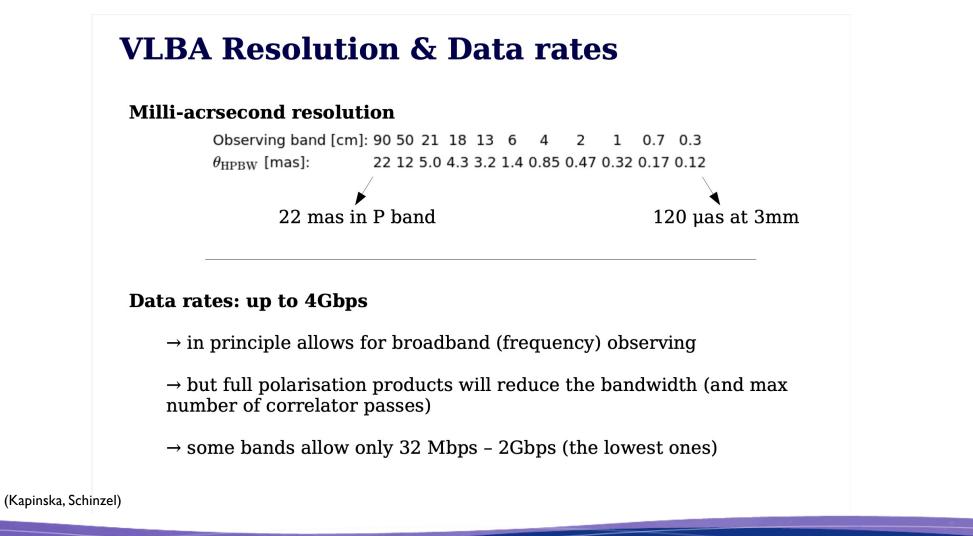
Realtime Photos for All Sites

http://www.vlba.nrao.edu/sites/SITECAM/allsites.shtml

VLBA data correlator: located in Socorro, NM

- \rightarrow data from each antenna are digitalised locally, recorded and physically sent to Socorro
- \rightarrow data correlation to the specifications of PI
- \rightarrow supporting multiple phase centres, and correlations "per mode"

(Kapinska, Schinzel)


VLBA Frequency Bands

https://science.nrao.edu/facilities/vlba/docs/manuals/oss/bands-perf

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
	Receiver	Nominal	Typical	Center	Typical	Baseline	Image	
	Band	Frequency	Zenith	Frequency	Peak	Sensitivity	Sensitivity	
	Designation	Range	SEFD	for SEFD	Gain	ΔS ^{512,1m}	∆Im ^{4096,8h}	
	(*)	[GHz]	[Jy]	[GHz]	[K Jy ⁻¹]	[mJy]	[µJy beam ⁻¹]	
Single receiver	90 cm (a)	0.312 - 0.342	2742	0.326	0.077	111	(i) 266	
Single receiver	50 cm (a,b)	0.596 - 0.626	2744	0.611	0.078	443	(j) 753	
	21 cm (c)	1.35 - 1.75	289	1.438	0.110	2.9	(k) 10	
	18 cm (c)	1.35 - 1.75	314	1.658	0.112	3.2	(k) 11	
	13 cm	2.2 - 2.4	347	2.269	0.087	3.5	(k) 12	
	13 cm (d)	2.2 - 2.4	359	2.269	0.085	3.6	(k) 12	
	6 cm (e)	3.9 - 7.9	210	4.993	0.119	2.1	5	C-band
13/4-cm (S/X)	7 ghz (e)	3.9 - 7.9	278	6.660	0.103	2.8	7	→ best
dichroic system	4 cm	8.0 - 8.8	327	8.419	0.118	3.3	8	sensitivity
	4 cm (d)	8.0 - 8.8	439	8.419	0.105	4.4	11	J
Chand	2 cm	12.0 - 15.4	543	15.363	0.111	5.5	13	
C-band	1 cm (f)	21.7 - 24.1	640	22.236	0.110	6.5	16	
simultaneous	24 ghz (f)	21.7 - 24.1	534	23.801	0.118	5.4	13	
tunings anywhere	7 mm	41.0 - 45.0	1181	43.124	0.090	12	29	
in 4-8GHz band	3 mm (g)	80.0 - 90.0	4236	86.2	0.033	(h) 60	() 184	

(Kapinska, Schinzel)

VLA/VLBA Proposals & Observations

Two aims & One place where to do both: <u>https://my.nrao.edu</u>

Regular VLA/VLBA Proposal Calls are 2x each year: 1st Feb & 1st Aug

Ad-hoc **DDT proposals** (Director Discretionary Time) can be submitted at any time (but need good reason why can't wait for regular call)

Upcoming 2024A semester:

- \rightarrow deadline around 1st Aug
- \rightarrow VLBA observing: 1 Feb 1 Aug 2024
- → VLA observing dependent on configuration changes; in 2024A: B, C configurations & observing 25 Jan – 16 Sep 2024

(Kapinska, Schinzel)

Needed: <u>my.nrao.edu</u> account

Provides access to various services:

- Proposal preparation

• creating and submitting new proposals

• access to all proposals you are associated with regardless of your role (PI, co-I, contact author, reviewer)

- Data Processing on NM computing cluster
- VLA Observation Preparation Tool (OPT)
- VLA, VLBA, GBT data archive

(Kapinska, Schinzel)

Extended VLBA: Y1/Y27, HSA, GMVA, etc

VLBA + VLA/Y1

 \rightarrow can use a single VLA antenna (Y1) with standard VLBA

 \rightarrow offers shortest baseline on VLA – VLBA/PT station: $\sim 50 km$

HSA (High Sensitivity Array)

 \rightarrow VLBA, VLA/Y27, GBT, Effelsberg combined into a single interferometer

- \rightarrow can use any combination of the stations
- \rightarrow note that GBT time is very limited, Effelsberg support 5GHz and above

GMVA (Global 3mm VLBI Array)

 \rightarrow combines: 8 VLBA stations (HN and SAC excluded), GBT, Effelsberg, Pico Veleta, Onsala, Metsaehovi, Yebes, and Korean VLBI Network (KVN)

 \rightarrow phased ALMA can be requested

 \rightarrow European part of the GMVA coordinated by MPIfR, Germany

EVN (European VLBI Network) and Global cm VLBI

 \rightarrow a VLBI network of stations operated by an international consortium of institutes: <u>https://www.evlbi.org/</u>

 \rightarrow VLBA can be requested for observations

(Kapinska, Schinzel)

https://science.nrao.edu/facilities/vlba/docs/manuals/oss/vlba-plus

Joint Proposals

VLBI proposals submitted via NRAO:

- pure VLBA
- VLBA+VLA
- HSA if each telescope used for VLBI only (otherwise separate proposals)
- GMVA

EVN proposals submitted via European system

(https://www.evlbi.org/call-proposals)

Joint Proposals

- radio
 - Joint between VLA, GBT and VLBA require separate proposals for each (with the same scientific justification), except as elements of HSA.
 - Joint Proposals with ALMA \rightarrow single proposal only.
- multi-wavelength
 - Joint proposals with HST, Chandra, XMM-Newton, Swift, Fermi
 - Each has own Memorandum with NRAO:

https://science.nrao.edu/observing/call-for-proposals/2023b/joint-proposals

2023 CASA VLBI Workshop @JIVE

- can request time with either telescope in joint proposals

(await 2024A CfP for up-to-date details)

(Kapinska, Schinzel)

VLBA Resources

- NRAO Science Helpdesk: https://help.nrao.edu
- Call for Proposals: https://go.nrao.edu/cfp
- VLBA Observational Status Summary (OSS): https://go.nrao.edu/vlba-oss
- VLBA Proposing Guide (including HSA, GMVA): https://go.nrao.edu/vlba-prop-doc
- VLBA Archive data: https:// data.nrao.edu

Proposal Deadline 2024A

Monday, 1 Aug 2023, 21:00 UTC

(Kapinska, Schinzel)

(pre-Announcement distributed yesterday!)

Resources

Student Observing Support (SOS) Program

→ competitive student funding in support of successful highly ranked proposals (NRAO)

https://science.nrao.edu/opportunities/student-programs/sos

Publication support

→ NRAO provides publication support for qualified papers, proportionate to the page charges of qualified authors <u>https://library.nrao.edu/pubsup.shtml</u>

Observing support pages

→ one stop page for guides for process of proposing for and using NRAO observing time https://science.nrao.edu/observing

Science helpdesk - contact us, ask questions: https://help.nrao.edu/

(Kapinska, Schinzel)

2023 CASA VLBI Workshop @JIVE

П

VLBA technical developments to date

- VLBA construction began in 1984
- Inaugurated Aug 20, 1993 almost 30 years ago!
- No major upgrade project such as EVLA, but many meaningful improvements made:
 - Tape recorder \rightarrow two tape recorders \rightarrow Mark5A \rightarrow Mark5C \rightarrow Mark6
 - Hardware correlator \rightarrow DiFX software correlator
 - Max data rate: I 28 Mbps \rightarrow 4096 Mbps
 - Addition of W-band (86 GHz) receiver
 - Sensitivity upgrade of K-band (22 GHz) receiver (MPIfR funded)
 - C-band upgrade from 4.8-5.1 GHz \rightarrow 4-8 GHz based on EVLA project (MPIfR funded)

(Brisken)

12

Ongoing developments

- ngVLA is NRAO's long term vision
 - Will replace both VLA and VLBA with one new instrument
 - Need to keep VLBA operating well and competitively until this transition occurs (mid 2030s)
- Several projects are in development now
 - New digital back-end
 - High-speed fiber network and related infrastructure
 - New GNSS antennas and receivers
 - New synthesizers
- Other developments are being considered (not yet funded and not covered here)
 - 8-36 GHz ultra-wideband receiver
 - Wide-band LO/IF system
 - Updated antenna control units

(Brisken)

VLBA New Digital Architecture (VNDA)

- Replace aging RDBEs with new, extensible architecture
 - RDBEs are becoming difficult to maintain
 - They have some design deficiencies that impact science and operations
- Driving VNDA requirements:
 - Sample at > 8 bits per sample
 - Avoid sampler resets to improve delay stability
 - No user-visible tuning restrictions within bands
 - One personality supporting all PFB & DDC modes
 - To be fully backward compatible with RDBEs
 - Use of commercially available equipment to degree possible
 - Use standard interfaces wherever possible
 - Extensible: support user-provided guest equipment
 - E.g., spectrometer, pulsar backend, transient detector, ...

(Brisken)

VNDA project status

- Engineering change being considered to reduce development time and project costs

 No change of scope or capabilities is being considered
- First laboratory tests anticipated in late CY2023
- First on-the-sky tests anticipated in mid CY2024
- Project completion targeting early CY2025

(Brisken)

High-speed fiber networks

- NSF award funded deployment and initial operations Aug 2018 to Aug 2023
 - 4 sites at 200 Mbps, 2 sites at 10 Gbps and 4 somewhere in middle
 - Real-time operations at 128 Mbps can be supported
 - Real-time diagnostic testing is now routinely done
- Near-term goal: increase to support 512 Mbps observing data rates
 - Could transfer I+ sub-bands of data for any operational configuration
- Could lead to initial quick-look science data **VLBA** swc000 Correlator BR Program goal: support full real-time operations Data Buffer Server Mark6 DiFX:mgr soft switch jive5ab - Using current VLBA: 4.2 Gbps per site swc001 RDBEs sendit vlitebuf swc011 - Initial VNDA operations: up to 8.4 Gbps per site Infiniband DiFX:ds DiFX:core - Target 10 Gbps at all antennas FD swc002 ⇒ swc012 (Brisken) swc010 SC swc020 2023 CASA VLBI Workshop @JIVE

Kitt Peak fire, June 17, 2022

- Downtime of 232 days; back online early Feb, 2023
- Network restoration in progress; currently relying on ViaSat

The next-generation Very Large Array (ngVLA)

A transformative new facility that will replace the VLA and VLBA to tackle a new Scientific Frontier: **Thermal imaging at milli-arcsec scales.** ... and much much more!

ngVLA Concept:

10x the sensitivity of the JVLA/ALMA
10x higher resolution than the JVLA/ALMA
1.2 - 116 GHz Frequency Coverage
244 x 18m + 19 x 6m offset Gregorian Antennas
Centered at VLA site and concentrated in SW US.

Fixed antenna locations across North America.

2023 CASA VLBI Workshop @JIVE

(Murphy)

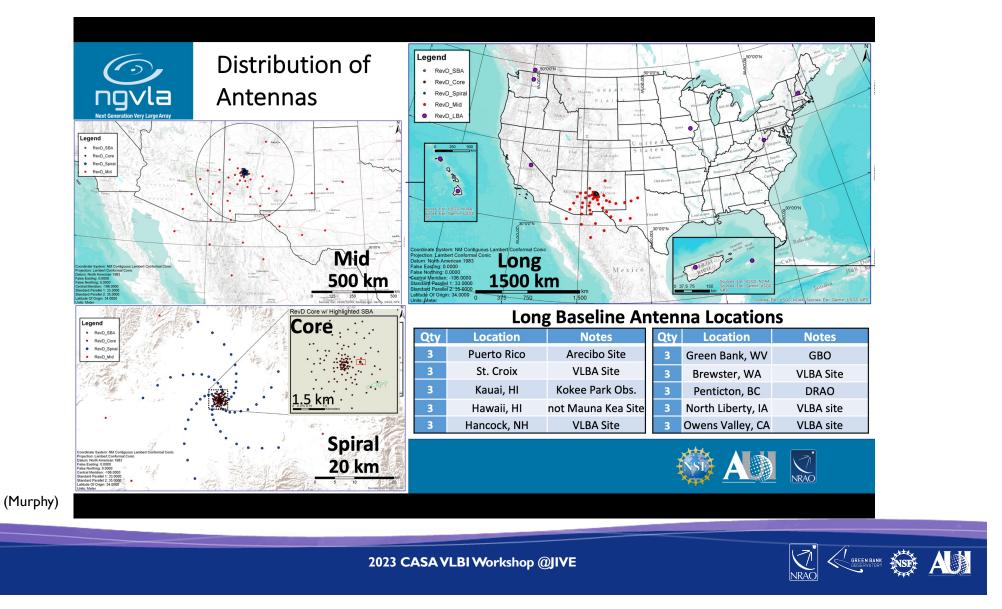
ngvla Next Generation Very Large Array

14

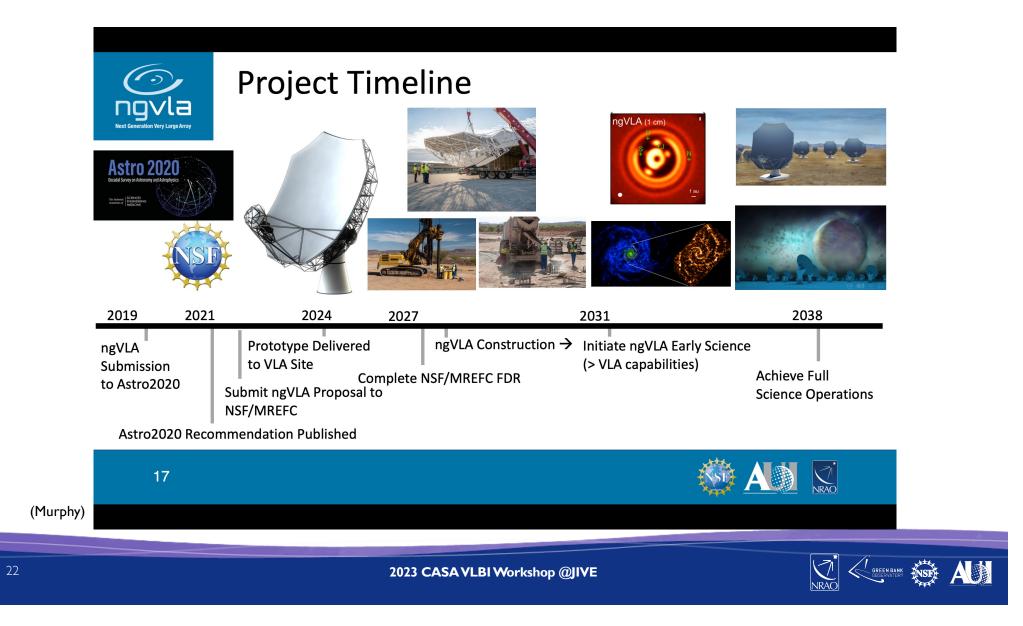
(Murphy)

ngVLA Technical Baseline

Key design choice: Antennas in fixed locations


- > Year-round access to all angular resolutions
- > PI-driven facility providing "science sub-arrays"
- Frequency Range: 1.2 116 GHz
- Main Array: 244 x 18m offset Gregorian Antennas
 - Core: 114 antennas; B_{max} = 4.3 km
 - Spiral: 54 antennas; B_{max} = 39 km
 - Mid: 46 antennas in NM, AZ, TX, MX; B_{max}=1070 km
 - Long: 30 antennas across continent; B_{max} = 8860 km
- Short Baseline Array: 19 x 6m offset Greg. Antennas
 - Use 4 x 18m in **Total Power mode** to fill (*u*,*v*) hole

Band	freq. range	Correlator /	Requirement	
#	(GHz)	Beamformer	(design)	
1	1.2 - 3.5	digital efficiency	>95%	
2	3.5 - 12.3	narrowest channel	<1 kHz	
3	12.3 - 20.5	total # channels	>240,000	
4	20.5 - 34	sub-band width	<250MHz (218.75)	
5	30.5 - 50.5	total bandwidth	>14GHz/pol (20)	
6	70 - 116	# formed beams	10	



S/W and Computing Considerations

- **Operations Concept**: HLDP (High-Level Data Product) Telescope
 - Both for <u>1st Observations</u> and <u>Archive</u> projects.
- **Post Processing**: Analysis shows that storing the raw visibilities will be tractable when ngVLA goes into operations.
 - Data processing is post-facto, with system sized for average throughput.
 - Average Data Rate 7.6 GB/s. Designed for 320 GB/s peak.
 - 4 hr. observation 109 TB. Requires ~1000 cores to process in a few days.
- **Computing:** 2B Core-hr: Challenging, but can be met w/ COTS cluster.
 - Set by time resolution, spectral resolution, and multi-faceting in imaging
 - Some low-frequency, full-beam, AW-projection cases restricted in early operations.

VLA/VLBA \rightarrow ngVLA Transition Plan Development

)eve <u>lo</u>	pment of the VLA/VLBA to ngVLA	Transition Plan			Date	Milestone		
		Evaluate Transition Concept (Q3 CY2023		Final Transition Plan (Q2 CY2024 – Q1 2026)	Q1 CY2022	The NRAO Internal Technical Analysis Team is formed and charged.		
TAG	Charge to the TAG Develop Initial List of Transition Options	Prioritized Transition Option Concepts			Q2 CY2022	Initial transition options documented for distribution to the TAG by the NRAC Internal Technical Analysis Team.		
NRAO	Options with NRA0 for Technical Impacts	Option Concept Accepted	Synchronize with ngVLA PDR Documentation	VLA to ngVLA Transition Plan	Q2 CY2022	Transition Advisory Group (TAG formed and charged.		
	Transition Advisory Group				Q2 CY2023	Transition Option Concepts document delivered to the NRAO from TAG.		
	•Alessandra Corsi (Texas Tec	h) – Co-Chair •Lau	rent Loinard (UNAN	1)	C12023	delivered to the NKAO from FAG.		
	•Joe Lazio (Caltech/JPL) – Co	-Chair •Les	 Leslie Looney (Illinois) 			Selected Transition Concep		
	•Stefi Baum (Manitoba)		 Lynn Matthews (MIT/Haystack) 			synchronized with ngVLA PDI		
	•Simona Giacintucci (NRL)	•Ne	d Molter (UC Berkele	ey)		documentation.		
	•George Heald (CSIRO)		•Eva Schinnerer (MPIA)			Final Transition Plan completed an		
	 Ian Heywood (Oxford) 	•Ale	x Tetarenko (Texas T	ech)	CY2025	included as part of FDR documentation.		
	•Daisuke Iono (NAOJ)	•Gra	azia Umana (INAF)					
•Megan Johnson (USNO)		•Ale	 Alexander van der Horst (GWU) 					
•Michael Lam (RIT)		•Eri	 Eric Murphy (ex-officio) 					
•Adam Leroy (OSU)			 Trish Henning (ex-officio) 					

(Murphy)

Main Antenna Development

- Feed Low: Maintenance requirements favor a receiver feed arm on the low side of the reflector.
- Mount and Drive concept: Chosen for life-cycle cost.
- Materials: machined and bonded Al panels with steel BUS, composite sub-reflector and mostly carbon fiber feed arm.

Key Specifications				
18m Aperture	Offset Gregorian			
Shaped Optics	3° Slew & Settle in 7 sec			
Surface: 160 µm rms	Reference pointing: 3" rms			
Precision conditions:	Total efficiency >80% (XQ)			

<u>Status</u>

- Prototype under construction in Germany & Spain
- Delivery to VLA site expected in mid 2024
- Testing at 3 cm and 7 mm, • including correlation with VLA mtex antenna technology gmbh antennas

TT

• "This event has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004719"

www.nrao.edu science.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

26