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What this talk is about

LOFAR has three “observing modes”

–  Direct storage: direct dump of TBB voltages for e.g. cosmic ray air showers

–  Beam-formed: station-level beam-formed data before correlation for e.g. puslar studies (see 
Vlad’s talk)

–  Interferometric: data correlated between stations for e.g. imaging

I will discuss most commonly used sofware

relevant to processing interferometric data



LOFAR software 
landscape

Many different libraries, programs, 
packages and pipelines

– C++ for core components

– Python for utilities/pipelines and glue

– Workflow languages for pipelines

Many inter-dependencies

Partly community-maintained, partly 
ASTRON-maintained



LOFAR software 
landscape

Pipelines are complicated

– Dozens of individual steps that need to 
talk to each other

– Dozens to hundreds of input MSes

– Many output datasets, plots, solutions

Common Workflow Language

– Declarative language for running 
programs and creating pipelines



LOFAR user software landscape - pipeline components

Calibration: correct visibilities for systematics, ionospheric distortions and other corruptions

– Derive calibration solutions and correct datasets

– AOFlagger, DP3, facetselfcal, killMS, LoSoTo, RMextract

Imaging: transform data from visibilities into an image of the sky

– Deconvolution of the image

– DDFacet (SSD), WSClean (IDG, wgridder)

Utility: tools that do not fit in either category or are generally useful

– Manipulation or inspection of images, MSes, calibration solutions etc.

– facetselfcal, LOFAR-H5plot, lofar_helpers, LSMTool, shadems



LOFAR software landscape

ASTRON
developed/maintained

externally
developed/maintained



LOFAR user software landscape - pipelines

LINC (de Gasperin+2019); https://linc.readthedocs.io/en/latest/index.html

ddf-pipeline (Shimwell+2017, Tasse+2018); https://github.com/mhardcastle/ddf-pipeline

VLBI-CWL (Morabito+2021); https://git.astron.nl/RD/VLBI-cwl

– Wiki coming: https://github.com/LOFAR-VLBI/lofar-vlbi-pipeline/wiki

LiLF (de Gasperin+2019,2020); https://github.com/revoltek/LiLF

facetselfcal (van Weeren+2021) https://github.com/rvweeren/lofar_facet_selfcal

TraP (Swinbank+2015); https://github.com/transientskp/tkp

https://linc.readthedocs.io/en/latest/index.html
https://github.com/mhardcastle/ddf-pipeline
https://git.astron.nl/RD/VLBI-cwl
https://github.com/LOFAR-VLBI/lofar-vlbi-pipeline/wiki
https://github.com/revoltek/LiLF
https://github.com/rvweeren/lofar_facet_selfcal
https://github.com/transientskp/tkp


LOFAR user software landscape - pipeline components

Calibration

– DP3 (ASTRON; Dijkema+2023)

– killMS (Tasse+2014)

– LoSoTo (de Gasperin)

– RMextract (Mevius 2018)

Imaging

– DDFacet (Tasse+2018)

– Radler (ASTRON)

– WSClean (Offringa+2014)

Utility/data editing

– lofar_helpers (de Jong)

– LOFAR-H5plot (Sweijen)

– LoSiTo (Rafferty, Edler, de 

Gasperin)

– PyBDSF (Mohan & Rafferty 

2015)

– shadems (RATT-RU)



Pipelines

Pre-processing

– Averaging to 12 kHz, 1 s

– RFI excision

– Dysco compression

– Ran after observing by the observatory

Initial an direction-independent calibration

– LOFAR Initial Calibration Pipeline (LINC)

– Instrumental effects: polarisation alignment, clock drifts, bandpasses

– Direction-independent ionospheric effects



Pipelines

Direction-dependent calibration and imaging
– DDF-pipeline: direction-dependent calibration and imaging with the Dutch array using killMS + DDFacet
– Rapthor: direction-dependent calibration and imaging with the Dutch array using DP3 + WSClean
– LOFAR-VLBI: calibration and imaging with the full international array
– LiLF: direction-dependent calibration and imaging for LBA with the Dutch array using DP3 + DDFacet + 

WSClean

Time/frequency-domain
– DynSpecMS: time-frequency search for variability “dynamic spectrum”
– Transient Pipeline “TraP”: image-plane searches of transients

Solar and space weather
– Solar imaging pipeline



Calibration

DP3 (https://dp3.readthedocs.io/en/latest/; https://git.astron.nl/RD/DP3)

– Find or apply calibration solutions (in H5parm format); can exploit frequency coherency

killMS (https://github.com/saopicc/killMS)

– Find or apply calibration solutions (in npz format); can exploit time coherency

LoSoTo (https://github.com/revoltek/losoto)

– LOFAR Solution Tool for manipulating and plotting H5parms

RMextract (https://github.com/lofar-astron/RMextract)

– extract TEC, vTEC, Earthmagnetic field and Rotation Measures from GPS and WMM data

https://dp3.readthedocs.io/en/latest/
https://git.astron.nl/RD/DP3
https://github.com/saopicc/killMS
https://github.com/revoltek/losoto
https://github.com/lofar-astron/RMextract


Imaging

DDFacet (https://github.com/saopicc/DDFacet)

– Facet-based radio imager supporting full-polarisation DD corrections and smearing corrections

WSClean (https://wsclean.readthedocs.io/en/latest/; https://gitlab.com/aroffringa/wsclean)

– Imager supporting various gridders (w-stacking, IDG, wgridder) and multi-scale deconvolution

Image Domain Gridder (IDG; https://git.astron.nl/RD/idg)

– Can apply smooth screens or include the primary beam during gridding

– Use through WSClean

https://github.com/saopicc/DDFacet
https://wsclean.readthedocs.io/en/latest/
https://gitlab.com/aroffringa/wsclean
https://git.astron.nl/RD/idg


Utilities

LOFAR-H5plot (https://tikk3r.github.io/lofar-h5plot/; https://github.com/tikk3r/lofar-h5plot)

– Interactively explore calibration solutions in H5parm format

lofar_facet_selfcal (https://github.com/rvweeren/lofar_facet_selfcal)

– Advanced calibration tool

lofar_helpers (https://github.com/jurjen93/lofar_helpers)

– h5_merger and many other utilty scripts for dealing with MSes, FITS files, DS9 regions

LoSiTo (https://losito.readthedocs.io/en/latest/; https://github.com/darafferty/losito)

– LOFAR Simulation Tool for simulating various effects and corruptions into a dataset

shadems (https://github.com/ratt-ru/shadeMS)

– Efficiently plot data in MSes, e.g. uv coverage

PyBDSF (https://pybdsf.readthedocs.io/en/latest/; https://github.com/lofar-astron/PyBDSF)

– Source finder through gaussian fitting

https://tikk3r.github.io/lofar-h5plot/
https://github.com/tikk3r/lofar-h5plot
https://github.com/rvweeren/lofar_facet_selfcal
https://github.com/jurjen93/lofar_helpers
https://losito.readthedocs.io/en/latest/
https://github.com/darafferty/losito
https://github.com/ratt-ru/shadeMS
https://pybdsf.readthedocs.io/en/latest/
https://github.com/lofar-astron/PyBDSF


Software distribution
Containers and how to use them



Containerisation

Installing large software stacks is painful

– Many dependencies

– Some libraries are hard to install

Helping people with unknown setups is hard

– What hardware, OS, library versions etc.?

– How was it built?

Most people just want to do science,
not become sysadmin



Containerisation

Docker

– Industry standard mostly for cloud and VM

– Requires root access

Singularity

– HPC oriented favouring integration over isolation

– Single file

– No root access required

– Supports Docker

LINC and Rapthor offer Dockers

DDF-pipeline and FLoCs are Singularity



My “machine” becomes your “machine”



Frits’ LOFAR Containers a.k.a. FLoCs

https://tikk3r.github.io/flocs/

https://tikk3r.github.io/flocs/


Frits’ LOFAR Containers a.k.a. FLoCs

Monolithic container with a large software stack

– All core components such as AOFlagger, DDFacet, DP3, killMS, LoSoTo, RMextract, WSClean

– Additional utilities such as LOFAR-H5plot (interactive inspection of H5parms), LSMTool (skymodel manipulation), 
PyBDSF (source finding), shadems (plotting of e.g. uv coverage)

– Support for lofar_helpers and facetselfcal

– Many Python packages for LOFAR and general included

Support for running main calibration/imaging pipelines

– LINC not included, but supported, including user-friendly wrappers handling setup for you (see 
https://github.com/tikk3r/flocs/tree/fedora-py3/runners)

– DDF-pipeline included

– Rapthor not included, but supported

– facetselfcal not included, but supported

https://github.com/tikk3r/flocs/tree/fedora-py3/runners


Frits’ LOFAR Containers a.k.a. FLoCs

Things to keep in mind

– Do not mix host and container environment

– Paths that need to be accessible should be bound explicitely (and works recursively)

– CPU architecture still matters. If you see Illegal instruction (core dumped) let us/me 
know.

– Singularity is now called Apptainer. Depending on your system’s installed version the 
command is either singularity or apptainer



apptainer container usage

Downloading a Docker container

apptainer pull /path/to/container.sif docker://astronrd/linc:latest

Downloading FLoCs

wget ‘https://lofar-webdav.grid.sara.nl/software/shub_mirror/tikk3r/lofar-
grid-hpccloud/intel/flocs_v5.0.0_sandybridge_sandybridge_mkl_cuda.sif’

Not as nice, but illustrates that Singularity containers are just big files.



apptainer container usage

Interactive use

apptainer shell -B /my/dir,/other/dir /path/to/container.sif

Non-interactive use

apptainer exec -B /my/dir,/other/dir /path/to/container.sif <command>



apptainer container usage

Interactive use

apptainer shell -B /my/dir,/other/dir /path/to/container.sif

Non-interactive use

apptainer exec -B /my/dir,/other/dir /path/to/container.sif <command>

launch a shell in the container



apptainer container usage

Interactive use

apptainer shell -B /my/dir,/other/dir /path/to/container.sif

Non-interactive use

apptainer exec -B /my/dir,/other/dir /path/to/container.sif <command>

launch a shell in the container make these directories accessible



apptainer container usage

Interactive use

apptainer shell -B /my/dir,/other/dir /path/to/container.sif

Non-interactive use

apptainer exec -B /my/dir,/other/dir /path/to/container.sif <command>

launch a shell in the container make these directories accessible use this container



apptainer container usage

Interactive use

apptainer shell -B /my/dir,/other/dir/path/to/container.sif

Non-interactive use

apptainer exec -B /my/dir,/other/dir /path/to/container.sif <command>

launch a shell in the container make these directories accessible use this container

execute a command in the container



apptainer container usage

Interactive use

apptainer shell -B /my/dir,/other/dir/path/to/container.sif

Non-interactive use

apptainer exec -B /my/dir,/other/dir /path/to/container.sif <command>

launch a shell in the container make these directories accessible

execute a command in the container execute this command

use this container



Wrap up points

When calibrating, inspect your solutions carefully!

– Pipelines produce “inspection plots”

– LoSoTo for automated plotting, LOFAR-H5plot for interactive plotting

CPU architecture matters

If you see illegal instruction, see #software channel for a generic container

https://tikk3r.github.io/flocs/

https://github.com/tikk3r/flocs/

https://tikk3r.github.io/flocs/
https://github.com/tikk3r/flocs/


Thank you for your attention!
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