LOFAR IF data processing flow

An overview

Marco Iacobelli (ASTRON)

7th LOFAR data processing school April 16 2024

Outline

Lecture

Imaging mode data editing \rightarrow info & challenges Pipeline vs workflow \rightarrow def & pros/cons Data editing flow \rightarrow an overview Focused view

Demo

QA inspection

Outline

Lecture

Imaging mode data editing \rightarrow info & challenges Pipeline vs workflow \rightarrow def & pros/cons Data editing flow \rightarrow an overview Focused view

Demo

QA inspection

Low frequency (self-) Overview of calibration the LOFAR software LOFAR VLBI IF data processing flow Systematic effects in LOFAR data: inspection & Low removal frequency (Wide field) imaging

A next-gen facility

LOFAR is the most flexible, complex and data-intensive radio telescope currently in existence

Generates huge amounts of data which requires a lot of supercomputing power and innovative data solutions

A next-gen facility

LOFAR is the most flexible, complex and data-intensive radio telescope currently in existence

Generates huge amounts of data which requires a lot of supercomputing power and innovative data solutions

Enables astronomers to investigate a large spectrum of science use cases (from cosmology to solar-physics)

Imaging mode data editing

(Some of the) challenges in LOFAR calibration & imaging

- Large data volumes [CAL | IMG]
- LOFAR beam(s) time dependent & difficult to model [CAL | IMG]
- Low S/N regime \rightarrow calibration errors [CAL]
- Large fractional bandwidth
 - Requires multi-frequency approaches [CAL | IMG]
- Large FOV
 - Direction-dependent calibration approaches needed [CAL]
 - Large w-values [IMG]
 - Deconvolution complex [IMG]

Operation	Lecturer(s)	
CAL	M. Mevius & C. Groeneveld R. van Weeren R. Timmerman	
IMG	A. Offringa	

Data processing \rightarrow process to generate from raw data science ready data products

Data processing \rightarrow process to generate from raw data science ready data products

Pipeline \rightarrow a series of processes/steps to filter or transform data

stand alone tool

Data processing \rightarrow process to generate from raw data science ready data products

 $\begin{array}{l} \mbox{Pipeline} \rightarrow \mbox{a series of processes/steps to} \\ \mbox{filter or transform data} \end{array}$

• user stand alone tool

Workflow \rightarrow pipeline(s) integrated in a data processing framework including move data from a source, to a destination, based on quality validation

• supported user service

LOFAR pipelines designed to perform an incremental data editing

- complexity (self-) calibration strategies \rightarrow demanding hardware requirements
- data complexity and sizes $O(TB) \rightarrow$ demanding storage requirements O(10TB)

LOFAR pipelines designed to perform an incremental data editing

- complexity (self-) calibration strategies \rightarrow demanding hardware requirements
- data complexity and sizes $O(TB) \rightarrow$ demanding storage requirements O(10TB)

Need for multiple QA checkpoints

Processing strategies vs science use case

Choices at the start of the data editing constrain generation of final output \rightarrow e.g. smearing

Name	Run as	CPU [hrs] MEM budget	Life cycle phase	Notes
Pre-process	workflow	O(10 ²) >32 GB	Mature and supported	New version under devs
LINC HBA LINC LBA	pipeline & workflow pipeline & workflow	O(10 ³) >32 GB	Mature, released & supported Devs ongoing close to 1st release	https://git.astron.nl/RD/LINC
DDF-pipeline	pipeline	O(10 ⁴) >256 GB	Mature, released	https://github.com/mhardcastle/ddf-pipeline
Lilf	pipeline	O(10 ⁴) >192 GB	Mature, released	https://github.com/revoltek/LiLF
RAPTHOR HBA	pipeline & workflow	O(10 ⁴) >192 GB	Devs ongoing, released & supported	Support use of facets / screens https://git.astron.nl/RD/rapthor/-/tree/master
LOFAR-VLBI HBA	pipeline (\rightarrow workflow)	O(10 ⁴ -10 ⁵) >192 GB	Devs ongoing, released	Targeted / wide field imaging https://github.com/LOFAR-VLBI/lofar-vlbi-pipeline

Data editing flow: pre-process

Pre-process in LOFAR data is needed to:

- decrease data size via
 - freq./time averaging
 - <u>visibilities compression</u>
- removal of interfering signals
 - bright off-axis sources
 - radio-frequency interference (RFI)
- Main software packages used:
 - <u>Default PreProcessing Pipeline</u> (<u>DPPP</u>) to average, demix, (RFI) flag, compress

Data editing flow: DIE cal (/img)

Direction-Independent Effects in LOFAR data are primarily caused by:

- The ionosphere \rightarrow mostly phase effects (vary quickly in time)
 - Faraday rotation
- The instrumental effects → amplitude effects (vary slowly in time)
 - Polarisation alignment
 - Element beam
 - Bandpass
 - Clock drift

Direction-Independent calibration (mainly) attempts to correct for these effects

Focused view: LINC

LINC perform Direction-Independent cal. (& img.)

- Based on the unified-calibration scheme of <u>de</u> <u>Gasperin et al. (2019)</u>
- Supports multi-epoch datasets (interleaved or multiple nights)
- Prepare data to use any DDE calibration software (e.g RAPTHOR, DDF-pipeline, LOFAR-VLBI)
- Main software packages used:
 - <u>Default PreProcessing Pipeline (DPPP)</u> to average, flag, calibrate, apply calib. solutions
 - <u>LOFAR Solution tools (LoSoTo)</u> to analyse/extract parameters from calib. solutions

Focused view: LINC

LINC perform Direction-Independent cal. (& img.)

Pipeline consists of 2 workflows:

- LINC calibrator: processes the (flux) calibrator to derive DIE corrections.
- LINC target: Transfers the DIE corrections to the target; does phase self-calibration of the target.
- DIE calibrated target visibilities to be used for further DDE processing.

Focused view: LINC

LINC perform Direction-Independent cal. (& img.)

- LINC uses <u>CWL pipeline framework</u> as backend:
 - Allows distribution over cluster nodes
 - Allows resuming of interrupted jobs
 - Integrated Docker support

Data editing flow: DDE cal/img

Direction-Dependent Effects in LOFAR data are primarily caused by:

- The ionosphere → mostly phase effects (vary quickly in time)
 - Dispersive delays
- The LOFAR beam → mostly amplitude effects (vary slowly in time)
 - Dipole beam & array factor

Direction-Dependent calibration (mainly) attempts to correct for these effects

Focused view: RAPTHOR

<u>RAPTHOR</u> performs CS&RS array Direction-(In)Dependent calib. & img.

- Based on the calibration scheme of <u>de</u>
 <u>Gasperin et al. (2020)</u>
- Supports multi-epoch datasets (interleaved or multiple nights)
- Designed to operate on HBA and LBA data
- Enable full-field of view / targeted processing
- Sub-optimal for:
 - very extended (e.g. >=1 deg) target sources (i.e. >1 facet needed)

Focused view: RAPTHOR

- Get list of DDE calibrators from sky model
 - Divide field into facets
- Iterative self-calibration:
 - Performed in multiple directions (facets) <u>simultaneously</u>
 - Each facet gets a single calibration solution
 - Designed to enable usage of 2-D screens for both CAL & IMG (in progress)
 - Get a sky model to (eventually) loop

Focused view: RAPTHOR

<u>RAPTHOR</u> performs CS&RS array Direction-(In)Dependent calib. & img.

- Uses a Python wrapper around CWL pipelines as backend:
 - The wrapper sets up & executes the pipelines as "operations" to perform the actual processing
 - Allows distribution over cluster nodes
 - Allows resuming of interrupted jobs
- Main software packages used:
 - <u>Default PreProcessing Pipeline (DPPP)</u> to average, flag, calibrate, apply calib. sols
 - LOFAR Solution tools (LoSoTo) to analyse/extract parameters from calib. sols
 - WSClean to apply calib. sols & perform imaging

Focused view: DDF-pipeline

DDF-pipeline performs CS&RS array Direction-(In)Dependent calib. & img.

- Based on the calibration scheme of <u>Tasse et</u> <u>al. (2021)</u>
- Supports multi-epoch datasets (interleaved or multiple nights)
- Designed to operate on HBA data
- Recommended for full-field of view processing

Focused view: DDF-pipeline

• Sub-dataset self-cal. & imaging:

- Get DDE calibrators & facets
- DIE self-cal. & imaging
- DDE self-cal. (phase only) & img.
- DIE self-cal. & imaging
- Improved DIE solutions & sky model
- Full dataset self-cal. & imaging:
 - DDE+DIE self-cal.
 - DDE imaging
 - Fast DDE self-cal.
 - Slow DDE self-cal.
 - Full field imaging (& quality checks)

Focused view: DDF-pipeline

DDF-pipeline performs CS&RS array Direction-(In)Dependent calib. & img.

- Uses a Python for both backend and frontend:
 - Allows distribution over cluster nodes
 - Allows resuming of interrupted jobs
- Large resources required: 32 cores, 192 GB memory, 10TB of disk space
- Man software packages used:
 - DDFacet
 - KillMS

Focused view: LILF

LiLF performs CS&RS array Direction-(In)Dependent calib. & img.

- Based on the calibration scheme of <u>de</u>
 <u>Gasperin et al. (2020)</u>
- Supports multi-epoch datasets (interleaved or multiple nights)
- Designed to operate on LBA data
- Enable full-field of view / targeted processing
- Sub-optimal for:
 - LBA data <30 MHz

Focused view: LILF

- Get list of DDE calibrators from sky model
 - Divide field into facets
- Iterative self-calibration:
 - Performed in multiple directions (facets) <u>simultaneously</u>
 - Each facet gets a single calibration solution
 - Get a sky model to (eventually) loop

Focused view: LILF

<u>LiLF</u> performs CS&RS array Direction-(In)Dependent calib. & img.

- Uses a Python for both backend and frontend:
 - Allows distribution over cluster nodes
 - Allows resuming of interrupted jobs
- Main software packages used:
 - <u>Default PreProcessing Pipeline (DPPP)</u> to average, flag, calibrate, apply calib. sols
 - <u>LOFAR Solution tools (LoSoTo)</u> to analyse/extract parameters from calib. sols
 - <u>WSClean</u> to apply calib. sols & perform

Data editing flow: DDE cal/img (VLBI)

Direction-Dependent Effects in LOFAR data are primarily caused by:

- The ionosphere → mostly phase effects (vary quickly in time)
 - Dispersive delays
- The LOFAR beam → mostly amplitude effects (vary slowly in time)
 - Dipole beam & array factor

Direction-Dependent calibration (mainly) attempts to correct for these effects

Focused view: LOFAR-VLBI

<u>LOFAR-VLBI</u> performs full array Direction-(In)Dependent calib. & img.

- Based on the VLBI principles & LOFAR adapted scheme of <u>Morabito et al. (2021)</u> → see also <u>Sweijen et al. 2022</u> and <u>Ye et al. 2024</u>
- Supports multi-epoch datasets (interleaved or multiple nights)
- Designed to operate on HBA data
- Recommended for targeted exposures
 - full-field of view intensive processing
- Sub-optimal for:
 - faint (i.e. S/N<10) target sources away (i.e.
 >1.5deg) from the delay-calibrator

Focused view: LOFAR-VLBI

- apply solutions
- build a list of potential in-field calibrators
- for the best guessed in-field calibrator:
 - phase-shift to the direction
 - average time/freq
 - correct beam array-factor
 - combine CS into a ST & remove CS
- solve for dispersive delays (dTEC)

$$\Delta \phi_{\nu,t} = \phi_0 + \left(\frac{d\phi}{d\nu}\Delta\nu + \frac{d\phi}{dt}\Delta t\right)$$

- apply delay calibrator solutions
- for the selected DOIs:

Delay

- phase-shift to the direction
- solve for residual dispersive delays
- self-cal (amp.&phase) with imaging

Focused view: LOFAR-VLBI

<u>LOFAR-VLBI</u> performs full array Direction-(In)Dependent calib. & img.

For WIDE-FIELD MODE dependency on ddf-pipeline

Mandatory step before any data access / editing is to run the plot_field.py script to:

- query online LotSS & LBCS databases to construct catalogues of sources in the field
- provide a short summary of the observation parameters → help the user understand if the data is suitable for LOFAR-VLBI processing !

Focused view: LOFAR-VLBI

<u>LOFAR-VLBI</u> performs full array Direction-(In)Dependent calib. & img.

- Uses a Python wrapper around CWL pipelines as backend:
 - The wrapper sets up & executes the pipelines as "operations" to perform the actual processing
 - Allows distribution over cluster nodes
 - Allows resuming of interrupted jobs
- Main software packages used:
 - <u>Default PreProcessing Pipeline (DPPP)</u> to average, flag, calibrate, apply calib. sols
 - LOFAR Solution tools (LoSoTo) to analyse/extract parameters from calib. sols
 - WSClean to apply calib. sols & perform imaging

Take home messages . : ,

.

7th LOFAR data processing school April 16 2024

