Analysis techniques to characterize extended sources

Andrea BOTTEON

Botteon+20,22

💌 INAF – IRA

April 18, 2024 - The seventh LOFAR Data School, Dwingeloo

Extended radio sources...

Diffuse radio sources can span a *wide* range of angular scales and can have very different origin (*galactic* and *extragalactic*)

...and very extended radio sources

LOFAR uv sampling

Interferometers discretely sample the uv-plane

The *shortest baseline* determines the *maximum angular scale* that the interferometer can recover in the sky:

 $heta_{
m max} = \lambda/B_{
m min} = 206265/uv_{
m min} \; [
m arcsec]$ (e.g. 1 deg ~ 57 lambda)

LOFAR has a very dense inner uv-coverage → critical for recovering extended sources

Image fidelidy

Diffuse emission has low surface brightness: high fidelity images are required

Obtaining the **best** calibration possible is *key* to produce artifact-free sensitive images with high dynamic range

The *pipelines* developed to process **LOFAR surveys** (LoTSS & LoTSS) do a very good job, but *improvements are possible* towards specific (extended) targets

→ extract+selfcal method (https://github.com/rvweeren/lofar_facet_selfcal)

Exploit LoTSS-DR2 by yourselves

The pipeline used to process LoTSS observations is available at https://github.com/mhardcastle/ddf-pipeline

The document docs/extract.md contains information on how to extract and calibrate targets from LoTSS-DR2

Example:

extraction.py NGC507

Look up the object NGC507 to determine a position and do a default-size extraction of a region of 0.5 degrees square around the catalogued position.

extraction.py myfield 0.4 286.1918961 59.8494461

Extract a region of 0.4 degrees square around the specified RA and DEC, naming the working directory myfield.

Extraction will create a directory with the downloaded pipeline output and concatenated broad-band measurement sets, one per observation (which may mean more than one per field). These measurements sets will be in per-observation directories with names *.dysco.sub.shift.avg.weights.ms.archive?.

Inside the working directory for the target, created by the extraction, do

```
facetselfcal.py --auto --remove-flagged-from-startend \
    --helperscriptspath PATH -b NAME.ds9.reg -i NAME \
    *.dysco.sub.shift.avg.weights.ms.archive?
```

where the NAME is the name of your target and PATH the location of your directory with facetselfcal.py

What to do once data are calibrated?

Even if LOFAR can recover extended emission at relatively *high resolution*, *low resolution* imaging is desired to *increase the S/N of the detection* and better characterize the properties of the diffuse emission

In both cases, contours start at 3 sigma

What does low resolution mean?

It depends on the target/scientific goal. Generally, images at *multiple resolutions* are produced because they provide **complementary** information

Do you see the problem of low resolution imaging?

Subtraction of discrete sources

Discrete sources (mainly AGN) contaminate the extended emission

Image-plane subtraction: the contribution of the contaminating sources is subtracted a posteriori, in the *final image*. Fast but can be problematic (e.g. when your image has a low resolution)

Uv-plane subtraction: clean components of discrete sources are directly subtracted from the *visibility data*. Powerful but more time consuming

Subtraction of discrete sources

Discrete sources (mainly AGN) contaminate the extended emission

Image-plane subtraction: the contribution of the contaminating sources is subtracted a posteriori, in the final image. Fast but can be problematic (e.g. when your image has a low resolution)

Uv-plane subtraction: clean components of discrete sources are directly subtracted from the visibility data. Powerful but more time consuming

> 21m30s 00s

> > RA (12000

20m30s

Uv-plane subtraction

How to make the model for the subtraction?

- 1) High resolution + high uv_{min} imaging $\theta_{max} = \lambda/B_{min} = 206265/uv_{min}$ [arcsec] 2) Subtract from the visibility data the model obtained
- 3) Reimage the residual visibilities

The extended emission disappeared because it can be recovered only by baselines shorter than X

 \rightarrow we can use this to our advantage to *filter out* the extended emission and image only the discrete sources that we want to subtract

Choosing the uv_{min}

Botteon+<u>18</u>

1 Mpc

The flux density of Halo N depends on the **uv**_{min} adopted for the subtraction:

0

Low uv_{min}: better modeling of the extended emission from A and B High uv_{min}: better filtering of the halo diffuse emission from the model

Properties of extended sources

Now that you have images at multiple resolutions, with/without discrete sources removed, you are ready to measure the **source properties**

Largest-angular size (LAS) and largest-linear size (LLS):
 → probably the *easiest* property that you can derive...but pay attention that often diffuse sources do not have sharp boundaries!

• Volume (V):

 \rightarrow a real problem in astronomy due to the missing 3rd dimension: usually *spherical/ellipsoidal/cylindrical* geometries are assumed

• Flux density (S_v):

 \rightarrow probably *the most relevant* property that you can derive: with S_v you can derive the *power* (P_v), with P_v + V you can derive the *emissivity* (ε_v)

Different approaches:

1) Follow the 2 (or 3) sigma contour (polygon)

- 2) Adopt a circle/ellipse/polygon that follows the emission
- 3) Model the surface brightness profile of the source

Methods **#1** and **#2** use *regions files* and one of the following:

- ds9 + radioflux (https://github.com/mhardcastle/radioflux)
- casaviewer
- CARTA
- python/pyregion

Method **#3** requires some *assumptions* on the source and probably some *coding* to perform the surface brightness profile *fitting*

1) Follow the 2 (or 3) sigma contour (polygon)

2) Adopt a circle/ellipse/polygon that follows the emission3) Model the surface brightness profile of the source

2 sigma contour

Strictly following a given contour is **not correct**:

 if you perform a deeper observation of the same target, sigma will decrease: a property of a source should not depend on a parameter of the observation!
 do these fragmented borders make sense? No! Remember that often diffuse sources do not have sharp boundaries

Follow the 2 (or 3) sigma contour (polygon)
 Adopt a circle/ellipse/polygon that follows the emission

3) Model the surface brightness profile of the source

It's a good practice to report the regions used In the case of masking:

$$S_{\rm tot} = S_{\rm m} \times \frac{A_{\rm tot}}{A_{\rm m}}$$

 S_m is the flux density measured in the area A_m , where discrete sources were masked

 S_{tot} is the total flux density measured in the area A_{tot}

Follow the 2 (or 3) sigma contour (polygon)
 Adopt a circle/ellipse/polygon that follows the emission
 Model the surface brightness profile of the source

Oei+22

Typical models used are exponentials and Gaussians (easy to integrate!) Useful to obtain characteristic scales and for

population comparison

Best-fit model

A supernova remnant as a... Gaussian ring The lobes of a radio galaxy as... doubly truncated cones

Summary on S_v

Always quote the method used to measure the flux density!

Often, measurements with *different methods*, as well as with *different approaches* used to subtract discrete sources, are reported

The error on the flux density of a diffuse source is due to different factors:

$$\Delta S_{\text{diffuse}} = \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{sys}}^2 + \sigma_{\text{sub}}^2}$$
$$= \sqrt{\left(\sigma_{\text{rms}} \times \sqrt{\frac{A_{\text{s}}}{A_{\text{b}}}}\right)^2 + (\delta_{\text{cal}} \times S_{\text{diffuse}})^2 + (\xi_{\text{res}} \times S_{\text{discrete}})^2}$$

 σ_{rms} is the image noise A_s is the area of the source A_b is the area of the beam δ_{cal} is the systematic uncertainty on the flux scale (10% for LOFAR) ξ_{res} is the residual error on the source subtraction (see e.g. Botteon+22)

Combine LOFAR with other data

Spectral analysis of diffuse sources involving different interferometers needs caution because the different uv-coverages of the instruments

To make a fair comparison between different interferometers:

- use a common uv_{min}, where uv_{min} is the shortest well-sampled baseline by all instruments
- compensate the different uv-sampling by matching the uv-planes as closely as possible or by using a uniform weighting

Most of the times, this implies to **reduce** the capabilities of **LOFAR** to recover extended emission. If you do not do that, you risk to **bias** the spectral analysis, obtaining *steeper spectra* than what you should

Recovering diffuse emission: a note

The uv-plane is *sparsely sampled* and has a *central "hole"* (missing short spacings)

→ you can inject *fake sources* in the visibilities data, with different sizes D and flux densities S_{inj}, to understand the ability of an interferometer to recover the *diffuse emission* https://github.com/lucabruno2501/MUVIT/

LOFAR vs uGMRT vs JVLA

LOFAR: *negligible* losses for sources of **D** < 15'!

Our target: Abell 665

18.06' x 15.53

Abell 665 is a *galaxy cluster* at z=0.181 (1" = 3.062 kpc)

It hosts an extended source, a *radio halo*, which is detected also at 1.4 GHz by the **NVSS**

Abell 665 lays in the LoTSS-DR2 footprint: how does LOFAR recover the cluster diffuse radio emission?

Setup the enviroment

tar xzvf A665.avg.tar.gz

INFO: the FoV of the image is 20'x20'

This color will highlight the running time on my machine (12xCPU, 30GB RAM)

Basic clean

wsclean -no-update-model-required \
 -minuv-l 80.0 -size 1000 1000 -scale 1.2arcsec \
 -weight briggs -0.5 \
 -mgain 0.8 -data-column DATA \
 -join-channels -channels-out 6 \
 -fit-spectral-pol 3 \
 -auto-mask 2.5 -auto-threshold 0.5 \
 -niter 60000 \
 -baseline-averaging 10 \
 -name A665_ROBUST-0.5 \
 A665.ms.avg

real 0m53.005s

Check image and residual.

ds9 A665_ROBUST-0.5-MFS-image.fits A665_ROBUST-0.5-MFS-residual.fits -scale log -scale limits -1e-4 5e-2 -cmap cubehelix0 -lock frame wcs -lock scale yes -lock colorbar yes

Do you notice the issue?

Add multiscale

```
wsclean -no-update-model-required \
    -minuv-l 80.0 -size 1000 1000 -scale 1.2arcsec \
    -weight briggs -0.5 \
    -mgain 0.8 -data-column DATA \
    -join-channels -channels-out 6 \
    -fit-spectral-pol 3 \
    -auto-mask 2.5 -auto-threshold 0.5 \
    -niter 60000 \
    -baseline-averaging 10 \
    -name A665_ROBUST-0.5ms \
    -multiscale \
    A665.ms.avg
```

real 1m21.486s

Check image and residual

ds9 A665_ROBUST-0.5ms-MFS-image.fits A665_ROBUST-0.5ms-MFS-residual.fits -scale log -scale limits -1e-4 5e-2 -cmap cubehelix0 -lock frame wcs -lock scale yes lock colorbar yes

Compare previous model with present model

ds9 A665_ROBUST-0.5-MFS-model.fits A665_ROBUST-0.5ms-MFS-model.fits -scale linear -scale limits 0 5e-5 -cmap cubehelix0 -lock frame wcs -lock scale yes lock colorbar yes

Taper!

wsclean -no-update-model-required \
 -minuv-l 80.0 -size 300 300 -scale 4.0arcsec \
 -weight briggs -0.5 \
 -mgain 0.8 -data-column DATA \
 -join-channels -channels-out 6 \
 -fit-spectral-pol 3 \
 -auto-mask 2.5 -auto-threshold 0.5 \
 -niter 60000 \
 -baseline-averaging 10 \
 -name A665_ROBUST-0.5msTAPER15 \
 -multiscale \
 -taper-gaussian 15.0 \
 A665.ms.avg

real 0m34.552

Check image and residual

ds9 A665_ROBUST-0.5msTAPER15-MFS-image.fits A665_ROBUST-0.5msTAPER15-MFSresidual.fits -scale log -scale limits -1e-4 5e-2 -cmap cubehelix0 -lock frame wcs -lock scale yes -lock colorbar yes

Compare previous image with present image, what are the rms?

ds9 A665_ROBUST-0.5ms-MFS-image.fits A665_ROBUST-0.5msTAPER15-MFS-image.fits scale log -scale limits -1e-4 5e-2 -cmap cubehelix0 -lock frame wcs -lock scale yes -lock colorbar yes

Source subtraction

Discrete sources contaminate the diffuse emission: we want to subtract them

Let's make an image containing only discrete sources, then we subtract the corresponding model from the visibilities.

To make a image containing only discrete sources we need:1) high resolution2) filter out the diffuse emission

Make discrete sources model

wsclean -no-update-model-required \
 -minuv-l 4000.0 -size 1200 1200 -scale 1.0arcsec \
 -weight briggs -1.0 \
 -mgain 0.8 -data-column DATA \
 -join-channels -channels-out 6 \
 -fit-spectral-pol 3 \
 -auto-mask 2.5 -auto-threshold 0.5 \
 -niter 60000 \
 -baseline-averaging 10 \
 -name A665_ROBUST-1.0uvmin4kl \
 A665.ms.avg

real 1m21.486s

Check image and residual

ds9 A665_ROBUST-1.0uvmin4kl-MFS-image.fits A665_ROBUST-1.0uvmin4kl-MFSresidual.fits -scale log -scale limits -1e-4 5e-2 -cmap cubehelix0 -lock frame wcs -lock scale yes -lock colorbar yes

What does the model tell us?

ds9 A665_ROBUST-1.0uvmin4kl-MFS-model.fits -scale linear -scale limits 0 5e-5 cmap cubehelix0

Guide the clean with a mask

MakeMask.py --RestoredIm=A665_ROBUST-1.0uvmin4kl-MFS-image.fits \
 --Th=3.0 \
 --Box=100,2

Check the generated mask

ds9 A665_ROBUST-1.0uvmin4kl-MFS-image.fits A665_ROBUST-1.0uvmin4kl-MFSimage.fits.mask.fits -scale log -scale limits -1e-4 5e-2 -cmap cubehelix0 -lock frame wcs -lock scale yes -lock colorbar yes

Clean with mask

```
wsclean -no-update-model-required \
    -minuv-l 4000.0 -size 1200 1200 -scale 1.0arcsec \
    -weight briggs -1.0 \
    -mgain 0.8 -data-column DATA \
    -join-channels -channels-out 6 \
    -fit-spectral-pol 3 \
    -auto-mask 2.5 -auto-threshold 0.5 \
    -niter 60000 \
    -baseline-averaging 10 \
    -name A665_maskROBUST-1.0uvmin4kl \
    -fits-mask A665_ROBUST-1.0uvmin4kl-MFS-image.fits.mask.fits
    A665.ms.avg
```

real 0m4.592s

Model prediction

Compare previous model with present model

ds9 A665_ROBUST-1.0uvmin4kl-MFS-model.fits A665_maskROBUST-1.0uvmin4kl-MFSmodel.fits -scale linear -scale limits 0 5e-5 -cmap cubehelix0 -lock frame wcs -lock scale yes -lock colorbar yes

Satisfied? How could it be improved further?

Fill the MODEL_DATA column

```
wsclean -predict \
   -channels-out 6 \
   -name A665_maskROBUST-1.0uvmin4kl \
   A665.ms.avg
```

real 0m21.160s

Now we will make a new column "DIFFUSE_SUB", by subtracting the MODEL_DATA column to the DATA column

Subtraction

In a ipython shell:

```
import casacore.tables as pt
```

```
ms = 'A665.ms.avg'
outcolumn = 'DIFFUSE_SUB'
```

```
ts = pt.table(ms, readonly=False)
colnames = ts.colnames()
```

```
desc = ts.getcoldesc('DATA')
desc['name']=outcolumn
ts.addcols(desc)
```

```
data = ts.getcol('DATA')
model = ts.getcol('MODEL_DATA')
ts.putcol(outcolumn,data-model)
ts.close()
```

real 0m24.526s

Imaging only the diffuse emission 1/2

```
wsclean -no-update-model-required \
    -minuv-l 80.0 -size 1000 1000 -scale 1.2arcsec \
    -weight briggs -0.5 \
    -mgain 0.8 -data-column DIFFUSE_SUB \
    -join-channels -channels-out 6 \
    -fit-spectral-pol 3 \
    -auto-mask 2.5 -auto-threshold 0.5 \
    -niter 60000 \
    -baseline-averaging 10 \
    -name A665_subROBUST-0.5ms \
    -multiscale \
    A665.ms.avg
```

real 1m4.461s

Compare with non-subtracted image

ds9 A665_ROBUST-0.5ms-MFS-image.fits A665_subROBUST-0.5ms-MFS-image.fits -scale log -scale limits -1e-4 5e-2 -cmap cubehelix0 -lock frame wcs -lock scale yes lock colorbar yes

Imaging only the diffuse emission 2/2

wsclean -no-update-model-required \
 -minuv-l 80.0 -size 300 300 -scale 4.0arcsec \
 -weight briggs -0.5 \
 -mgain 0.8 -data-column DIFFUSE_SUB \
 -join-channels -channels-out 6 \
 -fit-spectral-pol 3 \
 -auto-mask 2.5 -auto-threshold 0.5 \
 -niter 60000 \
 -baseline-averaging 10 \
 -name A665_subROBUST-0.5msTAPER15 \
 -multiscale \
 -taper-gaussian 15.0 \
 A665.ms.avg

real 1m4.461s

Compare with non-subtracted image

ds9 A665_ROBUST-0.5msTAPER15-MFS-image.fits A665_subROBUST-0.5msTAPER15-MFSimage.fits -scale log -scale limits -1e-4 5e-2 -cmap cubehelix0 -lock frame wcs -lock scale yes -lock colorbar yes

Now you are ready to measure LAS, LLS, S_{ν} , P_{ν} , ε_{ν} , etc.

Science contest: NGC 4449

For point 2: explore different -minuv-l and the usage of the multiscale in the creation of the model of the discrete sources to subtract. How does this impact the final measurament? For point 3: use the different approaches discussed during the lecture to measure the flux density. What are the differences of the various methods (if any)?