

Statistical methods for multimessenger astrophysics with gravitational waves

Eric Chassande-Mottin

CNRS AstroParticule et Cosmologie Université Paris Denis Diderot

Obelics face-to-face Jan 26 2016, Rome, Italy

Context: detection of gravitational waves

Gravitational waves

- Predicted by Einstein's General Relativity
- Propagating distorsions of space-time
- Generated by cataclysmic events involving massive, compact astrophysical objects (black hole, neutron star)
- Develop a new astronomy based on GW
 - Complementary to photons: "multi-messenger"

GW detectors and related institutions

Km-scale Michelson type interferometers – high-precision metrology

- **Einstein Telescope** (3rd generation detector)
 - FP7 design study (2011).
 - ASPERA roadmap. Candidate ESFRI
- Advanced Virgo "pathfinder" (2nd generation)
- European Gravitational Observatory, EGO
 - CNRS-INFN consortium with other partners
 - Manages Virgo site (Italy) and hosts ET coordination

Advanced Virgo – status

- Initial Virgo (1st generation) operated between 2007-2012
 - Data sharing and joint analysis with US based LIGO
- Upgrading: x 10 sensitivity \rightarrow x 1000 in the event rate
 - Observability horizon for binary neutron stars : 140 Mpc
 - Current BNS event rate estimates: few to tenth events/yr
- First science data from advanced detectors
 - Advanced LIGO 1st science run, sep 2015 jan 2016
 - Advanced Virgo will take data jointly with aLIGO this year
- Opportunities for **multimessenger astrophysics**
 - Search for electromagnetic counterpart (i.e., GRB afterglow ...)
 - Extensive electromagnetic follow-up program inc. LOFAR, HESS, CTA, ...

Significance of a GW-EM association

- An electromagnetic counterpart to a GW event can help to increase our confidence in the astrophysical nature of this event
- Sky location of GW source is not well reconstructed

Typ. few 100 sq degrees observed with 2 detectors, or ~100 sq degrees with 3 detectors Larger for marginally significant events (μ 1/SNR²)

- Large sky area → Probability of a false association is not negligeable
- Requires a statistical procedure

Ideas for GW-EM association statistical assessment

- Analyze data jointly Define joint GW-EM likelihood
 - Different observables (cannot form images with GW)
 - Function of the characteristics of the GW and EM transients (luminosity, duration)
 - Measures the overlap in direction between GW and EM transients
- Estimate joint background from archival data
 - From random associations of simulated GW triggers and spurious EM transients (e.g., cosmic rays, ...)
- Deduce p-value for an observed association
 - How likely is this coincidence to be forfituous?

Bouhou et al, 2013. Evans et al. ApJS, 203, 28 (2012) and arXiv:1303.2174

Work plan – To be finalized

- Implementation of a joint GW-EM analysis scheme
 - \checkmark Perform custom selection cuts to extract marginal sub 5- σ GW and EM events
- Test using real observations
 - Recent aLIGO data & INTEGRAL (ACS)
 Benchmark for GW/High-energy observation
- Questions to be answered
 - Provide quantitative assessment of a joint observation
 - \sim Can two \sim 3- σ events be combined into one 5- σ ?