LOFAR Data Services: Now & Next

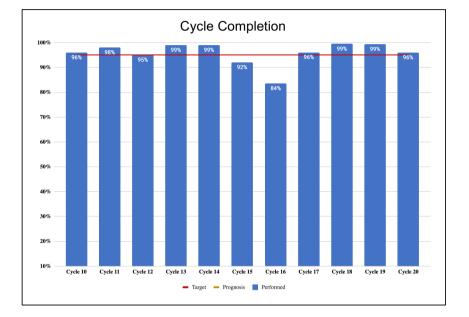
R. F. Pizzo Head Science Data Centre Operations

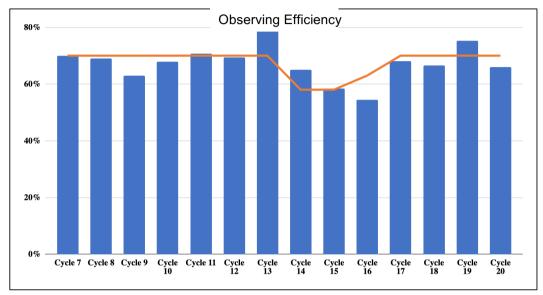
18 September 2024

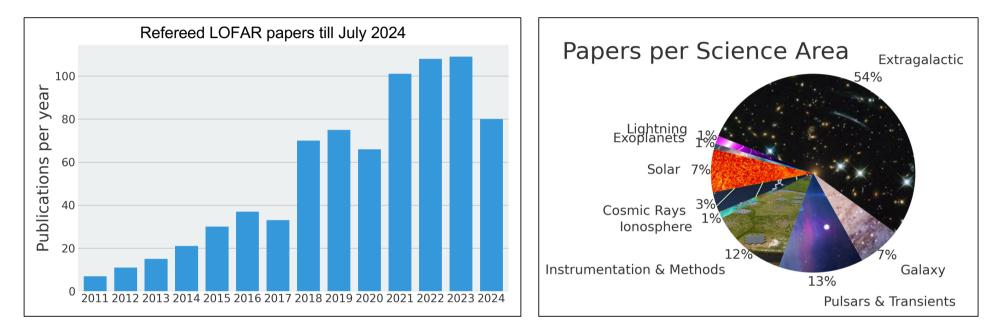
AST(RON Netherlands Institute for Radio Astronomy

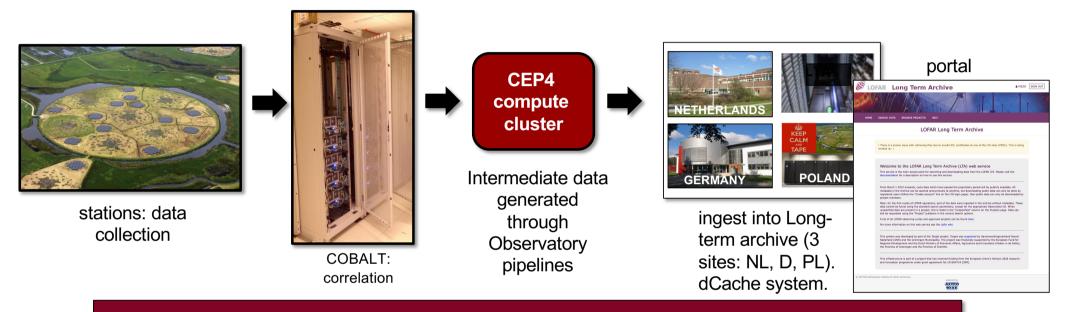
Outline

- Current status & successes
- ➢ Future ambition
- Challenges
- Resource challenges
- Data policies


Achievements


- Completed 21 operational Cycles
- ~65000 hours successfully observed >70% operational efficiency
- Operating a massive array growing in size and capabilities
- 60 PB (!) in the LTA- Largest astronomical data collection to date.
- Started LTA operations
- Supported an ever-growing community
- > Brought the instrument closer to our users:
 - LOFAR Schools (400+ participants)
 - 60 Busy Weeks
 - Traineeships

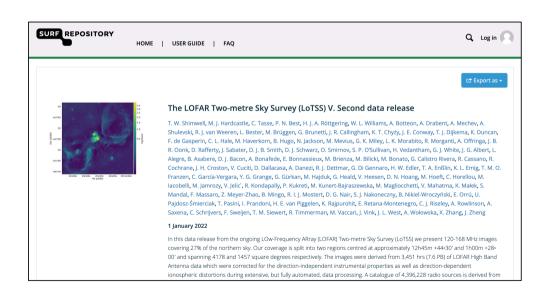

Observatory Performance

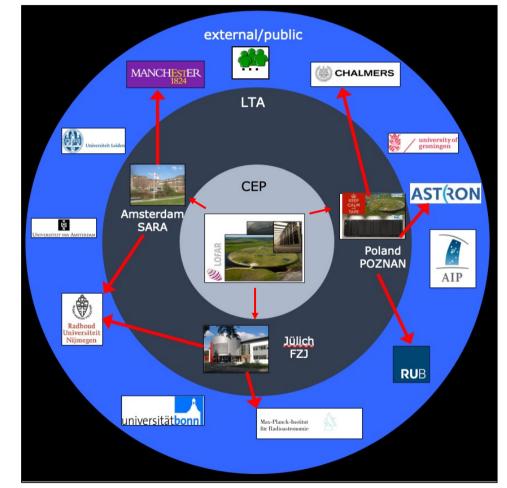

- Target efficiency: 70%
- Target completion: 95%
- Cycle 20: 96% completed

Lofar Science Output

- > > 750 refereed publications
- Publication rate: 2 papers per week top 10% of all astronomical facilities

The LOFAR System: Data Flow...so far




> Transport, processing and storage of large amounts of data :

- Data flow from all antennas combined: 1.7 Tbyte/s
- To COBALT from station after beamforming: 28 Gbyte/s
- Correlator output to disk: between 2-10 Gbyte/s
- Data storage challenges: ~ 80 TB/h
- Data transfer to the archive: ~10 TB/h
- Archive now: ~ 60 PB in mixed state of reduction and science readiness

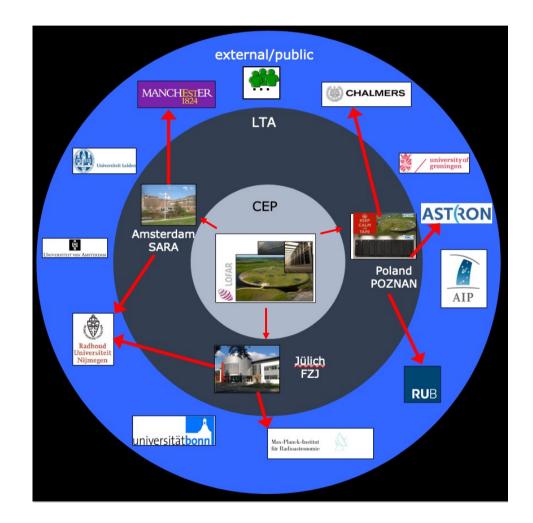
CENTRALIZED PROCESSING OF LOFAR DATA...SO FAR

- Initial processing in Groningen
- Single copy of uncalibrated data on one of the three archive sites
- Advanced processing handled by PI's on external facilities (or at the LTA)
- Some advanced products released through data releases

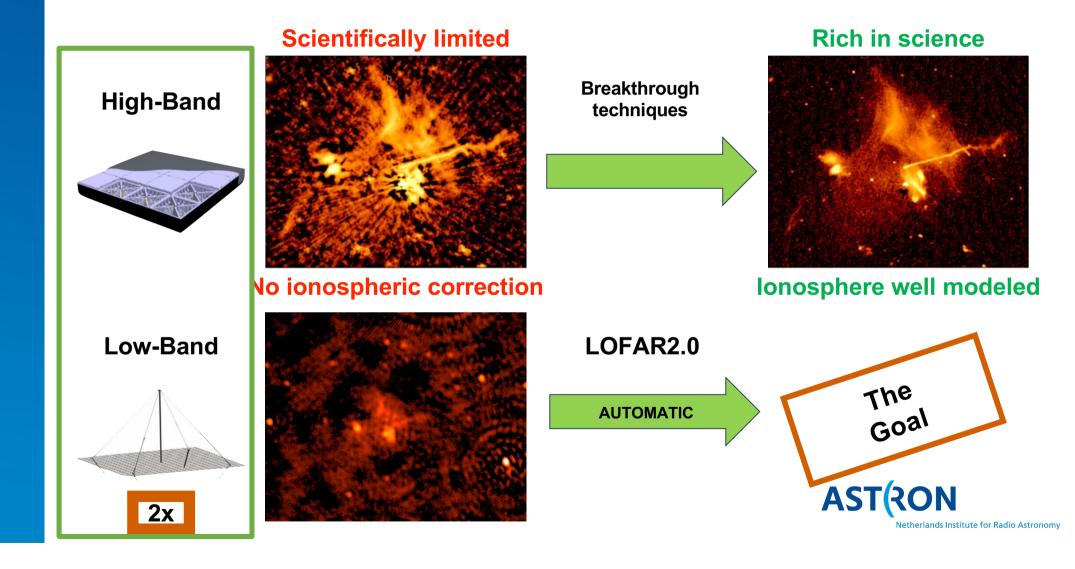
Challenges: Data Storage, Access, Distribution & Curation

- Storing data gets costly very quickly, especially online storage:
 - ✓ disk- Online-Pb-Year ~ € 100,000
 - tape Nearline-Pb-Year ~ € 14,000
 - one enters a regime where re-observing is cheaper

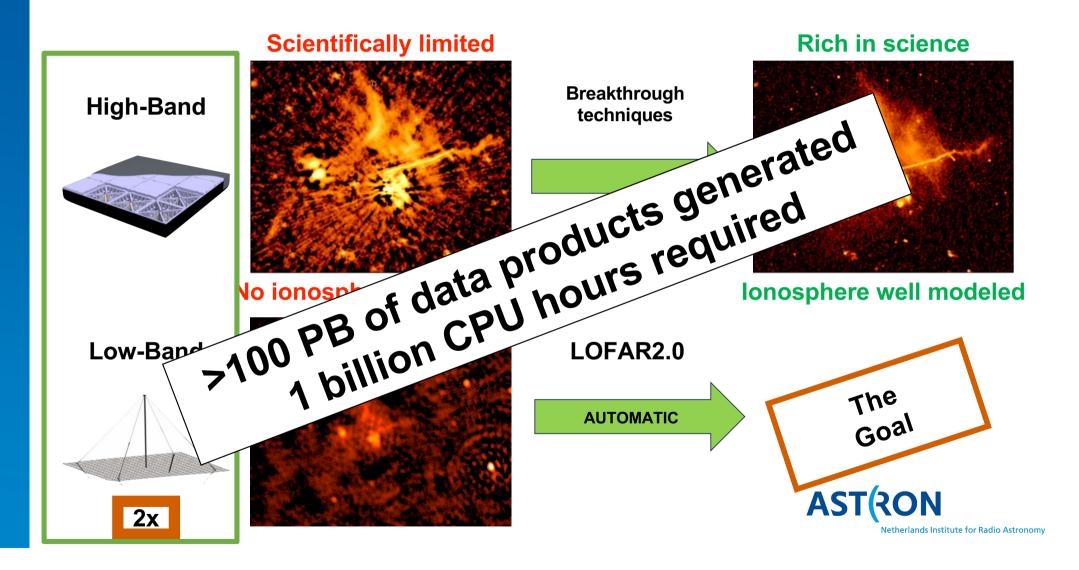
Data access


- Need good interfaces and functionalities that help users to mine the archive and find the data
- Intermediate data should be easily retrievable:
 - user data access limited by dCache overall capacity and bandwidth
 - LOFAR software distribution required

Curation:

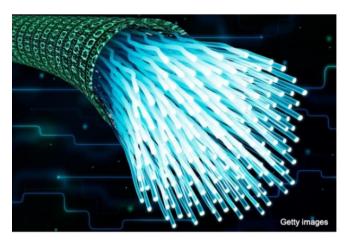

- Making available advanced products from users
 - Need 'user ingest' and a LOFAR data 'hub'

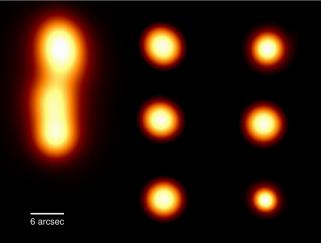
Distribution


Moving large amounts of data is impractical

COMING NEXT: LOFAR2.0

COMING NEXT: LOFAR2.0

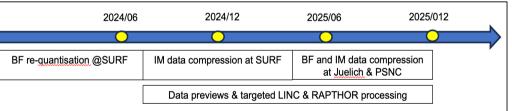



BEYOND LOFAR2.0

AST(RON

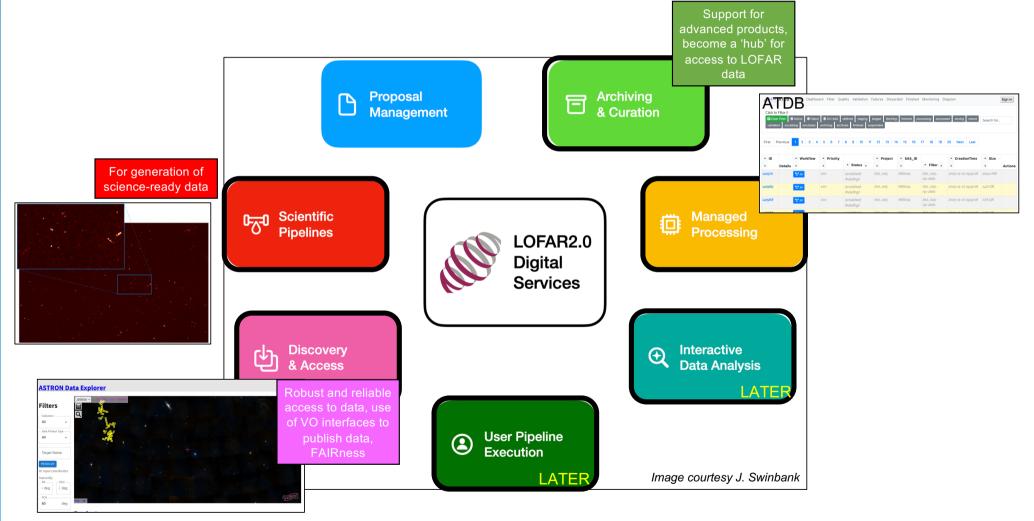
- LENSS LOFAR Enhanced Network for Sharp Surveys
- > Upgrade the network (10 \rightarrow 100Gb/s) for full-FOV, full-res imaging
- Will require high-throughput data processing system deploying innovative algorithms capable of keeping up with the data streaming from the telescope
- Data products generated: 50 PB/year
- Computing: 1 billion CPU hours

LOFAR


Tackling the Challenge: Generating Science-Ready Data

LOFAR Long Ter	rm A	rchiv	/e								LOGIN	
HOME SEARCH DATA BROWSE PRO	JECTS I	HELP								LC1_027	7 😧 🕶	
		Obs	ervation :	1 to 100 (sho	wing 10	00 of total 3	87) -					
			Av	eraging Pipel	ine (tot	al 0) -						
Calibration Pipeline (total 0) - dat									a qu	alit	ty fl	ag
			In	naging Pipeliı	ne (tota	al 0) -				I.		
			Long	Baseline Pip	eline (t	otal 0) -						
		Pulsa	r Pipeline	1 to 100 (sh		100 of total	387) -			Ļ		
				first previous 1 2								
Release # Project Date Pipeline Name	Pipeline Version	SAS Id	Pulsar Selection	doSinglePulseAnalysis		convertRawTo8bit [s]		DataProduct	All Dataproducts	Quality	Pulsars	
1 × LC1_027 2015-05-15 J1544+4937/PULF	o n/a	1027091	Pulsars in observation specs, file or SAP	0	Pulsar Pipeline	0	-1.0	show	show	Good	0	
2 ¥ LC1_027 2015-05-15 B1237+25/PULP	n/a	1027069	Pulsars in observation specs, file or SAP	0	Pulsar Pipeline	0	-1.0	show	show	Good	0	
3 ¥ LC1_027 2015-05-15 B1133+16/PULP	n/a	1027047	Pulsars in observation specs, file or SAP	0	Pulsar Pipeline	0	-1.0	show	show	Good	0	
4 ¥ LC1_027 2015-05-15 31024-0719/PULP	n/a	1027025	Pulsars in observation specs, file or SAP	0	Pulsar Pipeline	0	-1.0	show	show	Moderate	0	
		Court	tesy SK		TA F	UTUR		rtesy SK.	SP			

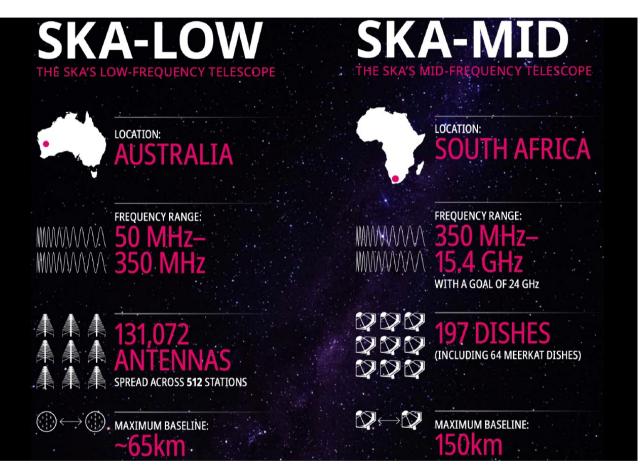
New operational area compared to LOFAR1


➤ LDV:

- Reduce data volume at the LTA to reduce operational costs
- Streamline data processing operations at the LTA
- Prepare ASTRON for LOFAR2 Large Programs
- LDV Operations started early 2023
 - Current focus: BF data processing (re-quantization) IF data compression following this year. Savings so far:
 >5PB + introduction of data quality flag
- Further valorisation of portions of the archive through data previews (marriage with LOFAR2.0 commissioning)

LDV timeline

Tackling the Challenges: Forthcoming Tools and Functionalities Developed by the SDC




Preparing for LOFAR2.0: Data Life Cycle & Early Cycle Data Retirement

Product type	Example	Retention period			
Raw	unprocessed vis.	Not retained			
Instrumental	Flagged, compressed vis.	18 months			
Intermediate	Direction- independent vis	18 months			
Advanced	Images, cubes	Indefinite			
Special cases	Unique observations	For discussion			

- LOFAR2 will generate considerably more data than LOFAR1: ~70 PB intermediate + ~30 PB advanced
- > Data challenge outstrips current affordable solutions
- ILT-board approved a data life cycle:
 - Advanced data products (images, cubes, catalogues) kept indefinitely
 - Intermediate data products will be retired after a period (~18 months), based on available resources
 - Exceptions to be considered in exceptional cases
- To prepare for LOFAR2, a first step is taken now: retirement of early LOFAR Cycle data (Cycle 0 till Cycle 6)
 - Timeline: end-2024

The SKA Challenge: Later This Decade

- Science-ready data generated by the SKA observatory: 600 PB/year – new magnitude for astronomical context
- Providing this scientific data repository represents a technical challenge for discovery, analysis and exploitation tasks
- Should include big data lakes and change of paradigm for data access
- SKAO data products provided to a network of SKA regional centers (SRC's) responsible for archiving & data curation, making the data available to the users, enabling scientific discovery

To Conclude

- > LOFAR is an important technological pathfinder for next-generation data-intensive radio astronomy
- We face fundamental challenges related to the data handling and this will become even more acute for the LOFAR upgrades
- > Demand for putting in place policies that adequately prepare the infrastructure for the future