Basics on Polarization Observations

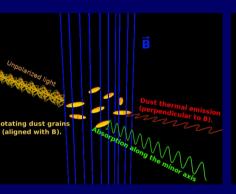
Introduction to Interferometric Polarimetry

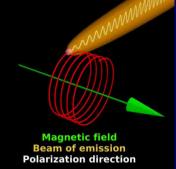
Ivan Martí-Vidal

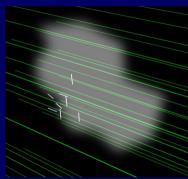
Dpt. Astronomia i Astrofísica Universitat de Valenda

JIVE VLBI School 2025

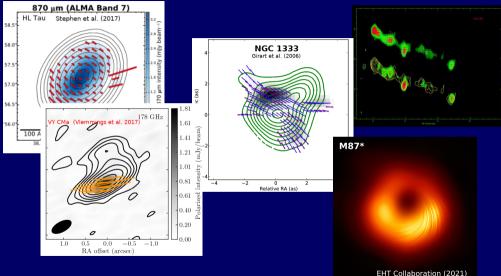
Light polarization in the Universe.







Polarized light carries a lot of information!



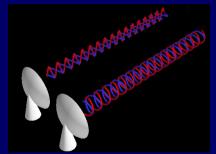
3 / 14

Detecting source polarization

• How do we detect the orientation of the electric field with an antenna?

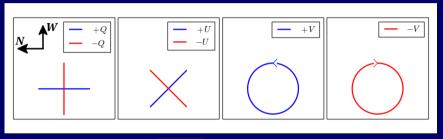
Detecting source polarization

- How do we detect the orientation of the electric field with an antenna?
- Polarizing receivers (polarizers). The signal is split coherently into two orthogonal polarization states.
 - Linear polarizers (horizontal / vertical linear polarization).
 - Circular polarizers (left / right circular polarization).



The Stokes parameters

• The Stokes parameters: I, Q, U, and V



- Linear polarization: $I_p = \frac{\sqrt{Q^2 + U^2}}{I}$, $\theta = \frac{1}{2} \arctan\left(\frac{U}{Q}\right)$
- Unpolarized intensity: $I_u = \sqrt{I^2 Q^2 U^2 V^2}$

The Measurement Equation

• We measure the signal cross-correlations between radio telescopes, a and b.

- We measure the signal cross-correlations between radio telescopes, a and b.
- ullet Each radio telescope registers two polarizations: ${\it R}$ and ${\it L}$. Hence what we measure is:
 - $ightharpoonup R^a, L^a, R^b, L^b$

- We measure the signal cross-correlations between radio telescopes, a and b.
- Each radio telescope registers two polarizations: R and L. Hence what we measure is:
 - $ightharpoonup R^a, L^a, \overline{R^b}, \overline{L^b}$
- We compute all combinations of polarization cross-correlations (a.k.a. visibilities):
 - ▶ The so-called "parallel hands": $V_{RR}^{ab} = \langle R^a \times (R^b)^* \rangle$ and $V_{LL}^{ab} = \langle L^a \times (L^b)^* \rangle$.
 - ▶ The so-called "cross hands": $V_{RL}^{ab} = \langle R^a \times (L^b)^* \rangle$ and $V_{LR}^{ab} = \langle L^a \times (R^b)^* \rangle$

- We measure the signal cross-correlations between radio telescopes, a and b.
- Each radio telescope registers two polarizations: R and L. Hence what we measure is:
 - $ightharpoonup R^a, L^a, R^b, L^b$
- We compute all combinations of polarization cross-correlations (a.k.a. visibilities):
 - ▶ The so-called "parallel hands": $V_{RR}^{ab} = \langle R^a \times (R^b)^* \rangle$ and $V_{LL}^{ab} = \langle L^a \times (L^b)^* \rangle$.
 - ▶ The so-called "cross hands": $V_{RL}^{ab} = \langle R^a \times (L^b)^* \rangle$ and $V_{LR}^{ab} = \langle L^a \times (R^b)^* \rangle$
- These cross-correlations can be related to the Stokes parameters of the observed source.

The RIME (e.g., Smirnov 2011)

This is what we measure:

 R^a , L^a , R^b , L^b

This is what we want:

 $\mathcal{I}(\alpha, \delta)$, $\mathcal{Q}(\alpha, \delta)$, $\mathcal{U}(\alpha, \delta)$, $\mathcal{V}(\alpha, \delta)$

The RIME (e.g., Smirnov 2011)

This is what we measure:

 R^a , L^a , R^b , L^b

Visibility Matrix:

$$V_{\odot}^{ab} = \left[egin{array}{cc} V_{RR}^{ab} & V_{RL}^{ab} \ V_{LR}^{ab} & V_{LL}^{ab} \end{array}
ight]$$

This is what we want:

 $\mathcal{I}(\alpha,\delta)$, $\mathcal{Q}(\alpha,\delta)$, $\mathcal{U}(\alpha,\delta)$, $\mathcal{V}(\alpha,\delta)$

Brightness Matrix:

$$S_{\odot} = \left[egin{array}{ccc} \mathcal{I} + \mathcal{V} & \mathcal{Q} + j\mathcal{U} \ \mathcal{Q} - j\mathcal{U} & \mathcal{I} - \mathcal{V} \end{array}
ight]$$

The RIME (e.g., Smirnov 2011)

This is what we measure:

$$R^a$$
, L^a , R^b , L^b

Visibility Matrix:

$$V_{\odot}^{ab} = \left[egin{array}{cc} V_{RR}^{ab} & V_{RL}^{ab} \ V_{IR}^{ab} & V_{II}^{ab} \end{array}
ight]$$

This is what we want:

$$\mathcal{I}(\alpha, \delta)$$
, $\mathcal{Q}(\alpha, \delta)$, $\mathcal{U}(\alpha, \delta)$, $\mathcal{V}(\alpha, \delta)$

Brightness Matrix:

$$S_{\odot} = \left[egin{array}{ccc} \mathcal{I} + \mathcal{V} & \mathcal{Q} + j\mathcal{U} \ \mathcal{Q} - j\mathcal{U} & \mathcal{I} - \mathcal{V} \end{array}
ight]$$

Radio Interferometer Measurement Equation (VLBI case):

$$V_{\odot}^{ab} = J_a \left(\int S_{\odot}(\alpha, \delta) \exp \left[2\pi j \frac{u\alpha + v\delta}{\lambda} \right] d\alpha d\delta \right) J_b^H$$
 where J_a and J_b are gain matrices.

7 / 14

The MEq. A Full-Stokes Formalism

For a source with a generic structure, the visibility matrix for antennas a and b (with no direction-dependent calibration) is:

$$V^{ab} = J_a \left[\int_{\alpha,\delta} S \, e^{-rac{2\pi j}{\lambda} (u \, \alpha + v \, \delta)} \, rac{dlpha \, d\delta}{z}
ight] (J_b)^H,$$

Let us remember the classical equation (where V^{ab} was a complex scalar, not a matrix):

$$V^{ab} = G_a G_b^* \int_{\alpha,\delta} I(\alpha,\delta) e^{-\frac{2\pi j}{\lambda}(u\alpha+v\delta)} \frac{d\alpha d\delta}{z}$$

Jones calibration matrices. Examples

• Gain,
$$G = \begin{pmatrix} A_r(t) e^{j\phi_r(t)} & 0 \\ 0 & A_l(t) e^{j\phi_l(t)} \end{pmatrix}$$

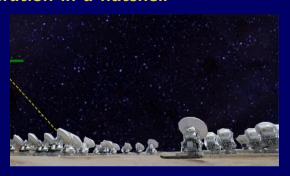
• Delay,
$$K=egin{pmatrix} e^{j au_r(
u-
u_0)} & 0 \ 0 & e^{j au_l(
u-
u_0)} \end{pmatrix}$$

• Bandpass,
$$B = \begin{pmatrix} A_r(\nu) e^{j\phi_r(\nu)} & 0 \\ 0 & A_l(\nu) e^{j\phi_l(\nu)} \end{pmatrix}$$

• Polarization Leakage (a.k.a. "Dterms"),
$$D = \begin{pmatrix} 1 & D_r(\nu) \\ D_r(\nu) & 1 \end{pmatrix}$$

Most Jones matrices are diagonal (good!). They are also multiplicative, e.g.: $J = G \times B \times K$, but care must be taken, since (non-diagonal) matrices generally do not commute.

Polarization calibration in a nutshell



- The axes of the antenna mounts are "tied" to the Earth (green).
 So are their polarizers.
- The source orientation is tied to the sky (yellow).
- Since the signal in a polarizer depends on its orientation w.r.t. the source, the Earth rotation allows us to decouple instrumental effects from the source polarization.

10 / 14

Polarization calibration

- Parallactic angle (rotation of antenna axes w.r.t. the sky. It is *deterministic*, so it should be done *a-priori*).
- Polarization leakage (the most tricky instrumental polarization quantity; it is usually done at the very end, after a final total-intensity image is obtained).
- Cross-Delay/phase (used to account for the optical-path difference between polarizations; should be done in a preliminary fringe-fitting).
- Amplitude ratio (hopefully calibrated with gains ant Tsys; should be done a-priori).

Calibration strategy

The right order for matrix product is: $J = (G_a K_c) \times D \times P \times (G K)$

i.e.:
$$V^{cal} = (G K)^{-1} \times P^{-1} \times D^{-1} \times (G_a K_c)^{-1} \times V^{obs}$$

Calibration strategy

The right order for matrix product is: $J = (G_a K_c) \times D \times P \times (G K)$

i.e.:
$$V^{cal} = (G K)^{-1} \times P^{-1} \times D^{-1} \times (G_a K_c)^{-1} \times V^{obs}$$

- STEP 0: Apply parallactic-angle correction and cross-polarization amplitude ratio.
- STEP 1: Calibrate the cross-delay(phase) using a strongly polarized source.
- STEP 2: Calibrate the leakage using an unpolarized source.
 - ▶ If all calibrators are polarized, solve for leakage and source polarization simultaneously.
 - Need good parallactic-angle coverage.
- STEP 3: Image each Stokes parameter separately. Combine images: $(Q, U) \rightarrow (I_p, \theta)$.

Calibration strategy

The right o M87*

i.e.:

- STEP 0: Apply par
- STEP 1: Calibrate
- STEP 2: Calibrate
 - ► If all calibrators
 - Need good para
- STEP 3: Image ear

 $P \times (G K)$

 V^{obs}

amplitude ratio.

d source.

ion simultaneously.

s: $(Q, U) \rightarrow (I_p, \theta)$.

EHT Collaboration (2021)

12 / 14

VLBI Polarimetry Software

VLBI Polarimetry Software

Nearly all the polarization calibrator sources have resolved structures in VLBI The problem of using spatially-resolved polarization calibrators is that we need to estimate the D and (complex) S matrices at the same time.

Inverse Modelling.

- ▶ LPCAL (Leppänen et al. 1995) for AIPS. Pretty old, but well established and tested.
- ▶ GPCAL (Park et al. 2020) for AIPS. Overcomes some LPCAL limitations.
- ▶ PolCal (Moellenbrock) for CASA. Some limitations critical for VLBI.
- ▶ PolSolve (Martí-Vidal et al. 2020) for CASA. It overcomes almost all the LPCAL & PolCal limitations.

Forward Modelling.

EHTim (A. Chael et al. 2018, 2020)

MCMC.

▶ DMC (D. Pesce 2020) and THEMIS (Broderick et al. 2020)

SUMMARY

- We have reviewed basic concepts of polarization.
 - Modes of polarization.
 - Stokes parameters.
- We have discussed about the different kinds of polarizers in radioastronomical receivers.
 - Linear polarizers (X-Y).
 - Circular polarizers (R-L).
- We have studied how to deal with polarization in interferometric observations.
 - The Measurement Equation.
 - The matrices for polarization calibration.
 - Overview of calibration procedure.