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The output of an interferometer is basically a table of the correlation (amplitude & phase) measured on each 
baseline every few seconds.     

INTRODUCTION TO IMAGING



The output of an interferometer is basically a table of the correlation (amplitude & phase) measured on each 
baseline every few seconds.

To get the final image out of our visibilities the steps are:

1) Calibration and data editing (lectures and hands-on so far!)

2) Deconvolution = making CLEANed images and models of your source (this talk) 

3) Refining the phase and amplitude calibration using a model of the source = self-calibration (next talk) 

INTRODUCTION TO IMAGING



1 h EVN

https://planobs.jive.eu/

S = Sampling function

Dirty beam D(l,m) = Fourier transform of the sampling function
We know D(l,m) !!!

We need to deconvolve B(l,m) from the dirty beam D(l,m)

BASICS OF IMAGING: FOURIER TRANSFORM 

Dirty image =

V = True visibilities



S = Sampling function

Dirty image =

Dirty beam D(l,m) = Fourier transform of the sampling function

An ideal interferometer would deliver
on a regularly highly sampled rectangular grid.

An image of would then be made by simply applying 
a Fourier transform 

But, arrays provide  typically poorly sampled Fourier Transform 
of the radio brightness region of sky

You need as many V(u,v) points as possible to reconstruct as robustly 
as possible  the surface brightness distribution of the source
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1 h 
<10 antennas

12 h 
>30 antennas

BASICS OF IMAGING: FT and uv-coverage
https://planobs.jive.eu/
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Dirty image =

V = True visibilities



BASICS OF IMAGING: FT and uv-coverage
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A good uv-coverage is crucial 
for recovering extended structures



Full-track 8.4 GHz VLA 
(A. Abdulaziz PhD thesis)

e-MERGE survey
MERLIN+VLA full-track

(Muxlow et al. 2020)
8hr ALMA 

Credits: CASA guide

BASICS OF IMAGING: FT and uv-coverage

Impressive MeerKAT and 
ASKAP uv-coverage

(Bharti et al. 2023)



Full-track 8.4 GHz VLA 
(A. Abdulaziz PhD thesis)

e-MERGE survey
MERLIN+VLA full-track

(Muxlow et al. 2020)
8hr ALMA 

Credits: CASA guide

BASICS OF IMAGING: FT and uv-coverage
1.5h VLBA L-band 

(Spingola et al. 2019a)

Impressive MeerKAT and 
ASKAP uv-coverage

(Bharti et al. 2023)



… but there will always be gaps in the uv-plane!
But well filled uv-coverages mitigates this

Two approaches

1) Direct Fourier Transform (DFT) = FT evaluated at 
every point of a rectangular grid – O(N2) operations 

Impractical for a large number of visibilities

2) Fast Fourier Transform (FFT) = interpolate the data 
onto a rectangular grid – O(N log N) operations

 It saves a lot of computing time!!

This FFT method requires the observed visibilities 
to be interpolated on a regular grid.

Usually we define the grid in the image plane, where
grid spacing = pixel size

Field of view is defined by the primary beam
 (~ 𝜆/D where D is the diameter of the antenna)

BASICS OF IMAGING: gridding

NxN grid

Intro to imaging – Cristiana Spingola (INAF-IRA)



Nyquist sampling theorem in astronomical terms:
The FWHM of the PSF should be sampled by at three least pixels 

C
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Output pixels
(image)

PSF relative 
to pixels

Nyquist sampling theorem in radioastronomical terms:

Ns at least 3, but typically 5 or 7 
(an odd number because the peak needs to correspond to a single pixel)

BASICS OF IMAGING: choice of pixel scale

The longest baselines will give 
the highest angular resolution



True visibilities V(u,v)Sampled visibilities V’(u,v) Sampling function S(u,v)

«Visibility domain»

«Image domain» True sky B (l,m)Dirty image B’ (l,m)

The dirty image is not the true image of 
the source, since the sampled visibilities 

are not the true visibilities

Corrections of the effect of Fourier 
sampling deficiencies on the dirty image 

= CLEAN algorithms

convolution

O
riginal slide from

 
Prof. G

arrington ER
IS 2017

FT-1 Gaps in the uv-plane will make 
sidelobes in the dirty beam

THE NEED FOR DECONVOLUTION

Dirty beam D(l,m)

FT



From «dirty image» To «CLEAN image»

….Why do we need all of this again?

B(l,m) * D(l,m)

Dirty beam

Deconvolve the intrinsic source 
brightness distribution B(l,m) from the 

dirty beam D(l,m)

DECONVOLUTION

The radio 
Point Spread Function (PSF)



Since only a finite number of (noisy) samples are measured, to 
recover B(l,m)  we need some stable non-linear approach + a 
priori information:

-   B(l,m) must be positive (exceptions: absorption 
lines and polarization)

- Radio sources do not resemble the dirty beam (i.e. 
sidelobes-like patterns)

- Sky is basically empty with just a few localised 
sources

S = Sampling function

Dirty beam

DECONVOLUTION
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CLEAN method principal steps (Högbom’s algorithm):

1) Initialize a residual map  (first image = dirty 
image)

2) Identify strongest peak as a delta component

3) Record the position and magnitude in a model (clean 
components), subtract it from the dirty image

4) Go to 1) unless you reach the stopping criterion

5) Convolve the model (clean components) with an idealized 
CLEAN beam (elliptical Gaussian fit of the main lobe of the dirty 
beam) 

6) Add the residual of the dirty image to the CLEAN image
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CLEAN method principal steps (Högbom’s algorithm):

1) Initialize a residual map  (first image = dirty image)

2) Identify strongest peak as a delta component

3) Record the position and magnitude in a model (clean 
components), subtract it from the dirty image

4) Go to 1) unless you reach the stopping criterion

5) Convolve the model (clean 
components) with an idealized CLEAN 
beam (elliptical Gaussian fit of the main 
lobe of the dirty beam) 

6) Add the residual of the dirty image to the CLEAN image
CLEAN beam
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Credits: M. Rioja
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CLEAN beam

Sidelobes due to 
gaps in the uv-
coverage
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The major cycle implements FT between the data and image domains
The minor cycle operates purely in the image domain

(The 2-cycles approach makes the deconvolution faster)

Also, typically we use CLEAN a fraction of the delta function (typically 5-10%), 
not the entire delta (the illustration is a semplification)

CLEAN method (Clark’s algorithm, a variant of Högbom’s algorithm):

1) Initialize a residual map  (first image = dirty image)
2) Identify strongest peak as a delta component 
3) Record the position and magnitude in a model (clean components), subtract it from the dirty 
image
4) Go to 1) unless you reach the stopping criterion
5) Convolve the model (clean components) with an idealized CLEAN beam (elliptical Gaussian fit 
of the main lobe of the dirty beam) 
6) Add the residual of the dirty image to the CLEAN image
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CLEAN in action (based on the ERIS tutorial)

Many thanks to Jack Radcliffe & the team!



The source size is typically much smaller than the entire Field-of-View (FoV), 
which corresponds to the primary beam
[ single-dish beam ≈ λ/D, where D=antenna diameter,  for homogeneous arrays]

It’s always good to check what is already known about your target!
For 3C277.1 you may check Lüdke+1998 (MNRAS, 299, 467–478
https://www.jb.man.ac.uk/DARA/ERIS22/plots/299-2-467.pdf )

Lüdke+1998

BASICS OF IMAGING: field of view

https://www.jb.man.ac.uk/DARA/ERIS22/plots/299-2-467.pdf


Basics of imaging and self-calibration – Cristiana Spingola (INAF-IRA)

CLEAN in action

Residuals        Model (clean components)           Restored image 

To make this process converge faster
we use the so-called CLEAN boxes (mask)

Also useful to not let CLEAN go to sidelobes
(see next slides)

CLEAN components obtained
during several minor cycles



Residuals        Model (clean components)           Restored image 

The residual image now shows fainter emission:
we enlarge the CLEAN boxes to cover this

New CLEAN components added to the previous ones

CLEAN in action



Residuals        Model (clean components)           Restored image 

CLEAN in action



Residuals        Model (clean components)           Restored image 

CLEAN in action



Residuals        Model (clean components)           Restored image 

This emission is brighter BUT it’s due to sidelobes!
It’s always a good idea take a look at the dirty beam before starting cleaning
+ CLEAN boxes prevent the CLEANing of sidelobes

CLEAN in action



Residuals        Model (clean components)           Restored image 

Residual image should look like «only noise»

CLEAN in action
This is important for 

self-calibration! 

STOPPING CRITERION
CLEAN beam



• Visually, when your residuals contain only noise – this means that you cleaned all the flux 
density of the source

• Convergence: Check the logger for max-min (possibily symmetrical), total flux density 
should increase while cleaning (if not, stop), noise level should decrese (if it does not change 
anymore, stop à overcleaning)

• Negative peak identified (negatives can indicate that CLEAN is now working on 
sidelobes/noise, but it can also indicate that CLEAN is trying to fix earlier mistakes) 

• Smallest peak identified below a threshold – which can be noise-based (e.g. 3 x 
theoretical noise estimated with exposure calculator – thermal noise) 

• Warning: Number of iterations – be careful when setting «niter», as you may end up 
doing too much or too little cleaning 

STOPPING CRITERIA



WEIGHTING

Slide credits: Urvashi Rau (NRAO)

A radio image is a weighted-average of the data

Visibility data are recorded onto a regular grid before performing FFT-1 

Use weights per visibility (weighted average of all data points per cell) 



WEIGHTING

Visibility Vk à AMP(ak)     PHASE(φk)      NOISE(𝝈k)      WEIGHT (wk)

Natural  wk= 1 / 𝝈k2. «more weights on short baselines», best sensitivity
     (important for more extended structures) but poor 
      beam shape with overemphasized sidelobes

Robust  wk = 1 / (S2 + 𝝈2k)
(Briggs 1995)

Uniform  wk= 1 /𝜚 (uk,vk) better resolution (tighter main lobe)
    and lower sidelobes
   

Average variance weighting factor 
over the grid cell in the image

Better rms, worse beam

Better beam, worse rms

Sampling density function

Natural

R = 0

Uniform

image

R = robustness 
it goes from -2 to 2 in 
CASA
and from -5 to 5 in 
AIPS

Natural
14 mas × 10 mas

Briggs R= 0
9 mas × 5 mas

Uniform
8 mas × 4 mas

Dirty beam
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WEIGHTING

Visibility Vk à AMP(ak)     PHASE(φk)      NOISE(𝝈k)      WEIGHT (wk)

Natural  wk= 1 / 𝝈k2 «more weights on short baselines», best sensitivity
    (important for more extended structures) but poor 

   beam shape with overemphasized sidelobes

Robust  wk = 1 / (S2 + 𝝈2k)
(Briggs 1995)

Uniform  wk= 1 /𝜚 (uk,vk)  «more weights on long baselines», better 
    resolution (tighter main lobe) and lower 
    sidelobes

   

Average variance weighting factor 
over the grid cell in the image

Better rms, worse beam

Better beam, worse rms

Sampling density function

Natural
14 mas × 10 mas

Briggs R= 0
9 mas × 5 mas

Uniform
8 mas × 4 mas

Dirty beam

R = robustness (or robust factor) 
and it goes from -2 to 2 in CASA
and from -5 to 5 in AIPS

Key points

• «Imaging» is a model-dependent iterative process  
(~ a 𝛘2 pixel-by-pixel minimization)

• We use a priori information: 
B(l,m) must be positive; radio sources do not resemble the dirty beam; 
Sky is basically empty with just a few localized sources

• Multiple images can be created with a given set of visibilities. 
Depending on your science goal you may prefer one or another 
(Ideally we should always put at least natural and uniform images in papers)



Imaging issues, recognizing errors and 
beyond Högbom/Clark methods



Imaging issues, recognizing errors and beyond Högbom/Clark 
methods: why?

LOFAR LBA and HBA pipeline (De Gasperin et al. 2023)ALMA pipeline (Hunter et al. 2023)Credits: SKAO

Also EVN pipeline 
See Archive talk (J. Oh) 



Imaging issues, recognizing errors and beyond Högbom/Clark 
methods: why?

LOFAR LBA and HBA pipeline (De Gasperin et al. 2023)ALMA pipeline (Hunter et al. 2023)Credits: SKAO

Also EVN pipeline 
See Archive talk (J. Oh) 

1) We need to be able to recognize in the data products (images) 
if there were issues in the pipeline, for example 

2) If the data products include a calibrated measurement set (e.g., ALMA) 
we can create images that are more appropriate for our specific science case, 
testing  weighting schemes or different CLEANing algorithms 



Imaging issues and recognizing errors

1. CLEANing procedure

2. Calibration and data-handling 

3. Source-related



ISSUES WITH CLEANING AND RECOGNIZING ERRORS
1) CLEANING-related

• Interpolation of unsampled (u,v) spacings (in 
particular short spacings):
reconstruction of largest spatial scales is always an 
extrapolation (CLEAN boxes help)

• Assumption of point-sources for extended 
structure is not great

• Under- and over-cleaning are often an issue
(over-cleaning: rms in logger does not change 
anymore)

• Computationally expensive, as it requires 
iterative, non-linear fitting process (CLEAN 
boxes/masks help)
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iterative, non-linear fitting process (CLEAN 
boxes/masks help) CLEAN method = Högbom

C
redits: André O

ffringa ER
IS 2017



ISSUES WITH CLEANING AND RECOGNIZING ERRORS
1) CLEANING-related

• Interpolation of unsampled (u,v) spacings (in 
particular short spacings):
reconstruction of largest spatial scales is always an 
extrapolation (CLEAN boxes help)

• Assumption of point-sources for extended 
structure is not great (but there are solutions)

• Under- and over-cleaning are often an issue
(over-cleaning: rms in logger does not change 
anymore)

• Computationally expensive, as it requires 
iterative, non-linear fitting process (CLEAN 
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reconstruction of largest spatial scales is always an 
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1) CLEANING-related

• Interpolation of unsampled (u,v) spacings (in 
particular short spacings):
reconstruction of largest spatial scales is always an 
extrapolation (CLEAN boxes help)

• Assumption of point-sources for extended 
structure is not great (but there are solutions)

• Under- and over-cleaning are often an issue
(over-cleaning: rms in logger does not change 
anymore)

• Computationally expensive, as it requires 
iterative, non-linear fitting process (CLEAN 
boxes/masks help)
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2) Calibration and data-handling related

• Bandwidth (chromatic aberration) 
and time smearing (de-correlation)

• Amplitude/phase errors from previous calibration 
and/or unflagged data 
(symmetric/antisymmetric artefacts)

ISSUES WITH CLEANING AND RECOGNIZING ERRORS

Direction of 
distortion

True source BW smeared 
source

Images of sources away from the observing centre are smeared out in the radial direction, 
reducing the signal-to-noise ratio. The effect of bandwidth smearing increases with the 
fractional bandwidth  𝚫𝛎/𝛎, the square root of the distance to the observing centre, 
(l2 + m2)1/2, and with 1 /𝛉b, where   𝛉b is the FWHM of the synthesized beam.

(Middelberg 2012)



ISSUES WITH CLEANING AND RECOGNIZING ERRORS

2) Calibration and data-handling related

• Bandwidth (chromatic aberration) 
and time smearing (de-correlation)

• Amplitude/phase errors from previous calibration 
and/or unflagged data 
(symmetric/antisymmetric artefacts)
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ISSUES WITH CLEANING AND RECOGNIZING ERRORS

3) Source-related

• Variability of the source

• Spectral variations of the source – multi frequency synthesis 
(gridding different frequencies on the same (u,v) grid is now standard)
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SgrA* EHT Collaboration (2022)

Snapshot images 
then stacking/average
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BASICS OF SELF-CALIBRATION
flux 

corrections 

be 



Standard calibration relies on 
frequent observations of radio 

sources with known structure, flux 
density and position (calibrators) 

to 
determine the empirical corrections 

for time-variable instrumental and 
environmental factors that cannot be 

measured directly

Observed visibilities at time t True visibilities

Thermal noise

Complex gains of antennas i and j

MOTIVATION: BEYOND STANDARD CALIBRATION

BASICS OF SELF

From Benito Marcote’s lecture



Using calibrators nearby the target one can 
solve for the gains as a function of time.

Then, calibration is transferred to the target 
sources, which is at a different position
(troposphere and ionosphere are not uniform across the sky)

 and observed at a different time
(troposphere/ionosphere might be variable and electronics too)

Observed visibilities at time t True visibilities

Thermal noise

Complex gains of antennas i and j
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Temporal and spatial variations in the 
atmosphere and electronics will not be 

properly estimated 

Hence the effect of gi(t) gj(t)* cannot be 
removed completely and residual errors 

remain

MOTIVATION: BEYOND STANDARD CALIBRATION

https://svs.gsfc.nasa.gov/4504

Ionosphere: Red represents high density



Using calibrators nearby the target one can 
solve for the gains as a function of time.

Then, calibration is transferred to the target 
sources, which is at a different position
(troposphere and ionosphere are not uniform across the sky)

 and observed at a different time
(troposphere/ionosphere might be variable and electronics too)

Observed visibilities at time t True visibilities

Thermal noise

Complex gains of antennas i and j
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Temporal and spatial variations in the 
atmosphere and electronics will not be 

properly estimated 

Hence the effect of gi(t) gj(t)* cannot be 
removed completely and residual errors 

remain

MOTIVATION: BEYOND STANDARD CALIBRATION



Observed visibilities at time t «True» visibilities = MODEL

Thermal noise

Complex gains of antennas i and j
2) Redundant calibration

Arrays are designed so that different 
baselines may measure the same uv-
spacings à this redundancy implies 
that the complex gains can be 
solved for (up to a linear phase slope, 
e g., Hamaker+ 1977)

1)  A priori knowledge of the source

When we make the first CLEANed image we create a MODEL 
of the target, which can be used as «True visibilities» 

Note: standard calibration is done with simple sources (ideally point-like) at 
the phase center, while self-calibration is performed on complex sources, to 
take into account their structure while estimating the residual corrections 

MOTIVATION: BEYOND STANDARD CALIBRATION



Observed visibilities at time t

Thermal noise

Complex gains of antennas i and j
2) Redundant calibration

Arrays are designed so that different 
baselines may measure the same uv-
spacings à this redundancy implies 
that the complex gains can be 
solved for (up to a linear phase slope, e g., 
Hamaker+ 1977)

2) A priori knowledge of the source

When we make the first CLEANed image we create a MODEL 
of the target, which can be used as «True visibilities» 

Note: standard calibration is done with simple sources (ideally point-like) at 
the phase center, while self-calibration is performed on complex sources, to 
take into account their structure while estimating the residual corrections 

MOTIVATION: BEYOND STANDARD CALIBRATION

«True» visibilities = MODEL



MOTIVATION: BEYOND STANDARD CALIBRATION

Using a good model (obtained from CLEANing) of 

the target to refine phase and amplitude corrections



SELF-CALIBRATION PROCEDURE

First CLEANed 
image to get the 
initial model of 

the target

Determine the residual 
phase (or amp) 

corrections using this 
initial model 

= find antenna gains

Create a new 
improved model of 

the target 

If OK, apply these 
antenna gains

Determine the residual 
phase (or amp) 

corrections using this 
new model 

= find antenna gains

If OK, apply these 
antenna gains

Continue…

Self-cal is an iterative 
process where we 

determine gi(t)gj(t)*, 
produce an 

improved model of 
the target and 

continue the cycle 
until we reach 
thermal noise 

(ideally)

gi(t)gj(t)* =  Ṽijobs
                       Vijmodel



SELF-CALIBRATION PROCEDURE

First CLEANed 
image to get the 
initial model of 

the target

Determine the residual 
phase (or amp) 

corrections using this 
initial model 

= find antenna gains

Create a new 
improved model of 

the target 

If OK, apply these 
antenna gains

Determine the residual 
phase (or amp) 

corrections using this 
new model 

= find antenna gains

If OK, apply these 
antenna gains

Continue…
Why does it work?

Self-calibration works 
because we have over-
constrained data (arrays 
with many antennas)
3 antennas = minimum for phase self-cal

4 antennas  = minimum for amp self-cal

Source structure can be 
parametrized (typically) in 
a relatively simple way à 
we can obtain a good 
model



SELF-CALIBRATION: the choice of solution interval

Solution interval: short enough to track the gain variations, but not too short otherwise the signal-
to-noise ratio per solution is too small
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Credits: McKean ERIS 2017

Typically one decreases the solution interval progressively across the self-cal loops



SELF-CALIBRATION PROs and CONs

• Sources with enough signal-to-noise ratio can be used for self-cal to obtain a 
better image =  determining better gains will lead to a better image  (improving 
dynamic range)

• You generally want to perform self-cal if the rms noise is much worse than 
expected and/or the dynamic range is not close to the theoretical one

• Learning self-cal is useful as it is rarely included in data reduction pipelines (but see 
recent ALMA  and VLA pipeline developement https://science.nrao.edu/srdp/self-
calibration-preview) 

https://science.nrao.edu/srdp/self-calibration-preview
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SELF-CALIBRATION PROs and CONs

• Sources with enough signal-to-noise ratio can be used for self-cal to obtain a 
better image =  determining better gains will lead to a better image  (improving 
dynamic range)

• You generally want to perform self-cal if the rms noise is much worse than 
expected and/or the dynamic range is not close to the theoretical one

• Learning self-cal is useful as it is rarely included in data reduction pipelines (but see 
recent ALMA  and VLA pipeline developement https://science.nrao.edu/srdp/self-
calibration-preview) 

• Absolute positional information is lost if you apply phase self-cal

• You need a sufficiently bright source = it’s not always successful

https://science.nrao.edu/srdp/self-calibration-preview
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• Off-source rms noise: you should obain better rms at each iteration of 
self-cal à ideally up to theoretical noise (thermal noise)

• Dynamic range (peak / off-source rms)  -- typical (good) values 102 - 106, 
it should improve as self-calibration continues

• Off-source rms noise structure quite uniform, close to a Gaussian 
random field («no stripes»):  
check for any phase and amplitude errors (see previous slides)
any «weird» structure might be a symptom that something went wrong (at 
the deconvolution stage and/or during self-cal calibration)

SELF-CALIBRATION: measuring the improvement through image quality



SELF-CALIBRATION: measuring the improvement through visibilities

Credits: Jack Radcliffe, 
https://www.jb.man.ac.uk/DARA/ERIS22/selfcalibration.html



SELF-CALIBRATION – when to stop and final notes

- Complex sources may require more cycles than 
compact (simple) sources

- Try to progressively go down to the lowest solution 
interval allowed by your dataset (always check 
failed solutions)

- Construct your model step-by-step:  a wrong 
model compromises the entire self-calibration 
process and may lead to wrong scientific results!

- Stop when your dynamic range (peak / rms) does 
not improve anymore – ideally you should have 
reached the thermal noise

- A little note about amplitude self-calibration: it is 
meant to «fix» time-dependent gain residuals , not 
to set the flux scale! It is easy to «lose» or «add» 
flux density  à always normalize your solutions (in 
CASA solnorm=True) and use longer solution 
interval wrt to phase-only self-cal
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Self-calibrated image
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