
19/09/2025, 19:58SFXC workshop 2025

Page 1 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

Return to the homepage

SFXC workshop 2025 • Post-correlation
workflow

With the SFXC installation come some tools that allow inspection of the .cor files that
the correlator outputs directly.

This, however, is not suitable for proper data quality assessment, and those .cor files
cannot be distributed to a scientist: none of the viable VLBI Radio Data Processing
systems (AIPS, CASA, Miriad, HOPS, …) can use the .cor files directly

This section explains how the workflow at JIVE addresses these issues.

On this page

1. Introduction

2. Canonical post-correlation workflow

3. Setting up your environment

4. Gathering data

5. Translate into MeasurementSet

6. Data inspection using jiveplot
The basics

Diagnostic plots:
a. the weights

b. bandpass/autocorrelation spectra

c. phase across the band

d. amplitude and phase versus time

e. displaying the ACTUAL FRINGE

Useful snippets hidden between the diagnostic plots
navigating the plots

https://jradcliffe5.github.io/sfxc_workshop_2025/
https://jive.eu/
https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html#introduction

19/09/2025, 19:58SFXC workshop 2025

Page 2 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

if the dots are too small

averaging in time

scalar or vector averaging?

organizing the plots

7. (optional) Export to FITS-IDI

Introduction/background

At JIVE it was decided long ago (~1997, that was in the previous millenium) to use the
AIPS++/CASA MeasurementSet v2 format (“MS”, “MSv2” hereafter) as internal data
format.

The reasons for choosing it as “internal” data format were simple:

no VLBI data reduction supported in the AIPS++ (former name of CASA , it’s
complicated) data reduction package (DRP) at the time

but it was a more modern data structure

AIPS++ had scripting language that give direct access to the data; none of the
other data formats had that (no, not Python, Python had it’s v1.2 release in 1995 -
and it definitely didn’t come with batteries included back then)

it would allow the correlator builders freedom of choice how to capture or
format the correlator output

and finally, it would only be a matter of time before the AIPS++ project would be
the VLBI DRP of choice … (it took until ~2019, a matter of time indeed)

This decision, to use MeasurementSet as intermediate/internal data format has proven
to be a very, very, good one. It has allowed JIVE to support multiple correlators, with
equally different output data formats, each only having to provide code to decode the
data format so it could be written out as MeasurementSet.

All other post-correlation workflow tools, which operate on the MeasurementSet
directly, are, and have been, entirely agnostic about which correlator produced the
data. Not bad!

As archival data product, which ends up in the EVN Archive and gets distributed to the

∞

https://casacore.github.io/casacore-notes/229.pdf
https://code.jive.eu/verkout/jive-casa/commit/d6d6ad3ac7b2af6f21d60f2a859ef47375760699
https://casa.nrao.edu/aips2_docs/glish/glish.html
https://en.wikipedia.org/wiki/History_of_Python
https://archive.jive.eu/

19/09/2025, 19:58SFXC workshop 2025

Page 3 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

scientists, the well-documented FITS-IDI format (“FITS-IDI”) was chosen.

Canonical post-correlation workflow

The typical post-correlation workflow at JIVE can be summarized as follows:

setup your environment

gather correlator output and experiment meta data (=VEX file)

translate into MeasurementSet

run scripts (optional):
that fix known issues

that flag bad/missing data

plot data from the MS

(optional) add calibration tables

(optional) export to FITS-IDI

Setup your environment

In the following steps several tools will be needed. They need to be present on your
post-correlation system. On the workshop cluster the compiled binaries will already
have been installed for you, as documented below. The Python modules used in this
document are not: because of Python3 package management strategies these have to
be installed in a virtual environment of your own by yourself - also documented below.

The jive-casajive-casajive-casajive-casa C/C++ compiled tools

The jive-casa tools are absolutely necessary for the post-correlation workflow. If not
available on the system, compiling from source is simple enough. However, before
going there, test if the tool(s) are already on your system:

https://fits.gsfc.nasa.gov/registry/fitsidi.html
https://code.jive.eu/verkout/jive-casa.git

19/09/2025, 19:58SFXC workshop 2025

Page 4 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

Check if the tool is already available on your system,
expect output similar to this.
$> j2ms2 --version
j2ms2: Version 1.0.6 git:master@95009aa

If not installed, the tools can be compiled from the following git repositories and
following the build instructions therein. They’re all CMake-ified projects.

the casacore suite of C++ libraries for radio astronomy data processing
NOTE: may be installable throuh the system’s package manager (apt-get ,
yum , …), YMMV:

$> sudo {apt-get|yum|...} install casacore-dev

the myvex VEX-parsing library, a dependency for the next item

the jive-casa data format translation programs

The Python based jiveplotjiveplotjiveplotjiveplot MS plotting package

JIVE software engineers are much like software engineers elsewhere: if something
doesn’t work, or is too slow, or is cumbersome - let’s write something different
ourselves!

Visualizing data from a MeasurementSet has always been painful, and in the beginning
non-existant even. Based upon the in-house developed not python application jivegui-
ms2, eventually, when Python did become the scripting language of CASA , the
jiveplot package got developed.

Because of Python3’s externally managed package installation (e.g. through apt , yum
or what have you) the jiveplot package needs to be installed in a virtual environment
(“venv”). Fortunately, these days that’s reasonably simple:

Create a directory where multiple virtual environments can be created
$> mkdir ${HOME}/venvs
$> cd ${HOME}/venvs

Each "venv" is identified by a name,
choose something descriptive, e.g. 'jiveplot'
$> python3 -m venv jiveplot

https://github.com/casacore/casacore
https://code.jive.eu/verkout/myvex.git
https://code.jive.eu/verkout/jive-casa.git
https://casa.nrao.edu/aips2_docs/glish/glish.html
https://code.jive.eu/verkout/jivegui-ms2.git
https://github.com/haavee/jiveplot.git
https://docs.python.org/3/library/venv.html

19/09/2025, 19:58SFXC workshop 2025

Page 5 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

Now the “venv” is created. But a “venv” must be activated before your system
actually uses the “venv”.

The command to activate (or switch to) a specific “venv” in the current shell is as
follows:

Note the leading '. ' (dot and space)
$> . ${HOME}/venvs/jiveplot/bin/activate

Or substitute jiveplot with the name of the venv of your choice.

Within the activated (jiveplot) venv, installing the jiveplot Python package
should be as easy as:

$> pip3 install jiveplot

The package is published on the Python Package Index (PyPI) here

Gather data

The SFXC correlator control file determines where the correlator generates outputs and
how to name the output file(s). For the post-correlation workflow it is important that the
file names end in .cor .

It is recommended to, if not already done through the automated tooling, to organise
the experiment folder and output and VEX file as indicated here:

/path/to/EXPERIMENT/
 !" EXPERIMENT.vix
 !" <EXPERIMENT>_<SCANx>.cor
 #" <EXPERIMENT>_<SCANy>.cor

At JIVE, where an experiment is correlated in multiple independent jobs, the experiment

https://pypi.org/project/jiveplot/

19/09/2025, 19:58SFXC workshop 2025

Page 6 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

folder is laid out like this:

/path/to/EXPERIMENT/
 !" EXPERIMENT.vix
 !" <JOBx>
 !" <EXPERIMENT>_<SCANx>.cor
 #" <EXPERIMENT>_<SCANy>.cor
 !" <JOBy>
 !" <EXPERIMENT>_<SCANz>.cor
 #" <EXPERIMENT>_<SCANi>.cor

If the VEX-file isn’t named like the directory it is in, a simple symbolic link will fix that
readily:

$> ln -s some_file_name.vix EXPERIMENT.vix

Translate to MeasurementSet

Assuming the data is gathered in an EXPERIMENT-specific folder as described under
gather data, and your environment is set up the conversion to MeasurementSet is done
using the j2ms2 (jay to em es too) tool.

Depending on how the data is organised in the EXPERIMENT directory, translating
SFXC Correlator data to a MeasurementSet called “EXPERIMENT.ms” is as simple as:

All `.cor` files in EXPERIMENT directory
(Or be explicit in exactly which one(s) to translate)
$> j2ms2 -o EXPERIMENT.ms *.cor

... or, when having subjobs
(Here it does all correlator data from all subjobs,
but it is possible to be explicit by naming the `.cor`
files to be translated individually)
$> j2ms2 -o EXPERIMENT.ms */*.cor

This will append the specifed .cor ’s data to EXPERIMENT.ms , creating it if it doesn’t

https://www.lenovo.com/us/en/glossary/symbolic-link/
https://code.jive.eu/verkout/jive-casa/j2ms2.md

19/09/2025, 19:58SFXC workshop 2025

Page 7 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

exist. If an error occurs about “not being able to find subband information” - please
check the mixed bandwidth note below first.

Notes:

if EXPERIMENT.ms already exists, all data specified on the j2ms2 command
line will be appended to that MS. Usually this is desirable behaviour, but
please see the notes on j2ms2
the name of the MS is rather immaterial, for demonstration purposes it is
always EXPERIMENT.ms but the EXPERIMENT part in this documentation is
to be interpreted as placeholder.

Mixed-bandwidth correlation

A special mention needs to go out to “mixed bandwidth” correlation. Many stations in
the EVN observe with different channel/IF/spectral window bandwidths. The scheduler
takes care that for example one 64 MHz band of station X overlaps with 2 x 32 MHz
bands of station Y - otherwise correlation would be impossible.

Because the VEX file is organised per station this means there are different frequency
setups in the VEX file. E.g. setup_64MHz for station X and setup_32MHzx2 for
station Y.

At correlation time this is usually fixed by assigning (or creating) a specific station’s
frequency setup as “how it’s correlated”. In the example here: the experiment will be
correlated as 2 x 32 MHz bands - i.e. in the setup_32MHzx1 mode.

j2ms2 cannot by itself know how the data was correlated in a case like this. Its default
behaviour is to take the first frequency configuration of the first station it finds in the
VEX file. A sensible default, but, in some cases, totally the wrong one, leading to a
cryptic error message such as:

As the j2ms2 documentation explains, the following command line option can be used
to instruct j2ms2 to use station Y’s frequency configuration:

$> j2ms2 eo:setup_ref_station=Y [options] *.cor

https://code.jive.eu/verkout/jive-casa/src/branch/master/j2ms2.md#what-j2ms2-does-not-do
https://code.jive.eu/verkout/jive-casa/src/branch/master/j2ms2.md#notes-re-filler-and-experiment-options

19/09/2025, 19:58SFXC workshop 2025

Page 8 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

Data inspection using jiveplotjiveplotjiveplotjiveplot

The basics

Before blindly throwing data reduction software at the data, it is recommended to do
some data quality assessments. At JIVE the jiveplot package is used to create
diagnostic plots from the raw data in a MeasurementSet.

For interferometric data a number of “standard plots” can tell “did the correlation
actually work?”, and summarise the data visually for quick inspection if any issues with
the downstream data reduction can be foreseen.

The SFXC correlator produces complex spectra as output by default, and that is what
ends up in the MeasurementSet. One complex spectrum per baseline, per source, per
subband, per polarisation per integration time. In other words: even a small MS will
contain a lot of spectra.

In this section the jplotter command line interface (the “jcli”) (from the jiveplot
project) will be used to create those ‘standard diagnostic plots’. It features very short
commands to type in (but they are ‘mnemonics’, mostly).

The focus of jplotter is on speedy and interactive plotting in favour of
readability. In this section the “jcli” commands that can be typed at the prompt are
rendered in boldface.

In the jiveplot repository exists a colourful PDF that explains the high-level
ideas behind jplotter . It might help having that open for browsing whilst going
through the steps below.

After having your environment set up, the “jcli” can be entered:

for reasons, the program is called `jplotter`, not jiveplot, sorry
it will drop you into the jplotter command line interface ('jcli')
$> jplotter
+++++++++++++++++++++ Welcome to cli +++++++++++++++++++
$Id: command.py,v 1.16 2015-11-04 13:30:10 jive_cc Exp $
 'exit' exits, 'list' lists, 'help' helps
jcli>

https://github.com/haavee/jiveplot.git
https://github.com/haavee/jiveplot/blob/master/doc/jplotter-cookbook-draft-v2.pdf

19/09/2025, 19:58SFXC workshop 2025

Page 9 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

Feel free to see what help and list do.

Hint: help without arguments provides an overview of all commands with a one-
line summary of what they do, providing some inspiration.

Use the built-in help <command> to have <command> explained in (too?) much
detail, e.g. about ‘mini languages’ that help easing the data selection.

According to the jiveplot ’s README.md the 5-second workflow is like this:

open a m(easurement) s(et) using the "ms" command
jcli> ms /path/to/folder/file.ms

(optional) select which data to plot
...

select a p(lot) t(ype) using "pt <plottype>"
l(ist) p(lottypes) ("lp") to see what's available
jcli> lp
...
jcli> pt <plottype>

And ... pl(ot)
jcli> pl

jcli has a notion of “current working directory”. It is possible to navigate / inspect the
file system using the standard UNIX commands cd, ls and pwd:

Should feature TAB-completion (if all is well)
jcli> cd /path/to/folder

normal ls command
jcli> ls -d *.ms
file.ms

Unsurprising!
jcli> pwd
/path/to/folder

19/09/2025, 19:58SFXC workshop 2025

Page 10 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

Weights

One of the simplest diagnostics to check is checking the weights that the correlator
has assigned to each complex spectrum. The weight is a floating point number

, where implies no valid samples at all went into the
resulting spectrum, and meaning perfect data - not a sample was lost
computing that spectrum.

assumes a MeasurementSet was already opened.
select p(lot) t(ype) w(eight-versus-)t(ime)
jcli> pt wt

just give it a go; pl(ot) all data and see what happens
jcli> pl

Navigating the plots

Most likely this plots way too much information. If more than one page of plots is
generated (see top right meta data in the plot) you can navigate through them
using commands to jump to f(irst), l(ast), the [nth]n(ext) or [nth]p(revious) page
([nth] is an optional positive integer, default =). Or enter i(interactive) mode,
where left/right mouse clicks do p(revious)/n(ext), but typing the flnp characters
also works (if the plot window has the focus)

See the colourful PDF, sections “11. Multi window/batch support, …, navigating
pages of plots” under the i, f, l (&cet.) section

As for the plethora if data points plotted, it helps realising that the weight on a cross-
baseline “XY” is computed from the weights of the individual antennae forming the
baseline. Those weights are taken from the antennae’s auto-correlation spectra, the ‘0-
baseline’ “XX” and “YY”. In fact, that extends to the cross-polarization products too: the
RL/LR weights are formed by combining the baseline input’s individual “X/R”, “X/L”,
“Y/R”, “Y/L” polarization weights.

Armed with this knowledge, together with jplotter ’s data set agnostic data selection
mechanisms allows plotting only the relevant weights:

only select the auto baselines
jcli> bl auto

0 ≤ weight ≤ 1 weight = 0
weight = 1

1

https://github.com/haavee/jiveplot/blob/master/doc/jplotter-cookbook-draft-v2.pdf

19/09/2025, 19:58SFXC workshop 2025

Page 11 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

for each subband/spectral window ('*'), select only the p(arallel)
polarizations
the 'fq' command allows selecting subband(s) out of the f(requency)
g(roups) (=frequency setups, configurations)
see "help fq" for an explanation
jcli> fq */p

and regenerate the pl(ot)
jcli> pl

Hint: if the dots are too small, try this:

the default 'point' symbol does not scale with point size
PGPLOT symbol #17 does
(see "help symbol" for more info)
jcli> symbol unflagged=17

set bigger (p)oin(t) (s)i(z)e
jcli> ptsz 1.2

and (pl)ot again
jcli> pl

Refer to PGPLOT symbols for an overview of the available PGPLOT symbols.

Auto-correlation spectra: i.e. amplitude versus frequency,
a.k.a. “bandpass”

It is very insightful to inspect the amplitude of the complex spectra versus frequency
response of the individual antennas. This is also called the “bandpass”. It shows (local)
RFI signals, polarization- or subband related issues, or e.g. receiver gain fall off when
observing near the edge of the receiver’s usable frequency range.

For these plots again only the auto baselines are used, but the cross-polarization plots
have a good use case here. They’ll show e.g. if a polarization is swapped, or if a station
is using a linearly polarized receiver whilst others employ circular polarized receivers.

https://jradcliffe5.github.io/sfxc_workshop_2025/figures/pgplot-symbols.png

19/09/2025, 19:58SFXC workshop 2025

Page 12 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

again assumes a measurement set is opened
make sure auto baselines are selected
jcli> bl auto

select p(lot) t(ype) amp(litude-versus-)freq(uency)
pt ampfreq

select all polarization products (=the default) of all subbands ('*')
jcli> fq *

and regenerate the pl(ot)
jcli> pl

Now this produces a lot of plots! That is because each integration is plotted as
individual spectrum! This has several drawbacks:

it takes a lot of time

we’re dealing with systems that are based on noise. A single short integration
therefore does not contain a lot of “signal” i.e. not a a lot of information content

Averaging (in time)

For this type of data it makes sense to av(erage) in t(ime) (avt command) to address
both issues: we get less data points and higher signal-to-noise. Because it’s ‘only’ the
amplitude we’re interested in here, we want scalar averaging:

jcli> avt scalar

jcli> pl

jplotter supports several ways of “how to integrate in time”, determined by the
solint setting:

just add up everything by baseline, subband/spectral window, polarization, source
irrespective of “when” during the experiment the data was observed

manually selected time-range bins (using time …, …), or easy-to-use “per scan”
(indexr + scan …)

every solint time interval

19/09/2025, 19:58SFXC workshop 2025

Page 13 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

Understanding the differences (and power) of the options please refer to, in decreasing
order of importance (and increasing level of complexity): help solint, then help indexr
(very lightweight), help scan (this one ranges from “trivial” to “OMG head explodes”),
to help time.

NOTE: At any point in time it is possible to review

the current data s(e)l(ection) indicating which data you’ve selected; a
selection of “none” “everything”,

the current p(lot) p(roperties) like p(oin)t s(i)z(e), line w(idth), and layout of
nxy panels (in the x- and y- direction, columns and rows), averaging settings,
& more

jcli> sl
...
jcli> pp
...

Averaging: scalar or vector?

Each spectral point in the data is a complex number, i.e. having an amplitude and a
phase - or differently said: it’s vector-like. When a number of spectral points are to be
averaged - be it in time or frequency (or both) - it depends on the quantity (‘amplitude’
or ‘phase’) that needs to be extracted if the complex vectors first need to be averaged
(‘vector averaging’), or if the quantity can be averaged (‘scalar’).

The mathematical difference can be expressed as: \(\text{Scalar average of Quantity} =
\frac{\sum_i^n \text{Quantity(data[i])}}{n}\) \(\text{Vector average of Quantity} =
\text{Quantity(} \sum_i^n \text{data[i]} \text{)}\)

where is a function returning a real-valued property of the data point
, e.g. it’s phase, amplitude, real or imaginary part, and is the

complex summation.

Organizing the plots

⇒

Quantity(…
data[i] data[i]∑𝑛

𝑖

19/09/2025, 19:58SFXC workshop 2025

Page 14 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

With a lot of data comes messy plotting on the screen - baselines, polarizations,
sources, subbands/IFs, … by default in no particular order. jplotter has some default
layouts per p(lot) t(type):

quantity versus channel: typically a matrix of panels, the x-axis is typically
moderately short: the number of frequency points per subband/IF

quantity versus time: these can get very long, several hours for a full EVN
experiment; the default layout is just in rows, allowing the full width of the window
for the x-axis

The layout in terms of panels (columns x rows) can be set using the nxy command.
jplotter supports fixed and flexible layouts. Depending on the actual number of
plots that need to be displayed, jiveplot can flexibly change the layout to fit all plots
on the whole screen. When adjusting the actual layout jplotter takes the hint from
the actual nxy setting which dimension (columns or rows) is preferred and stretches
that one. If the layout is fixed, well, it is fixed, irrespective of how many plots are
actually drawn.

arrange for eight panels: 4 columns x 2 rows
the default is "flexible" - allow stretching if < 8 plots
jcli> nxy 4 2

... or set a fixed layout
jcli> nxy 1 8 fixed

Even with the layout, the order of the data is still indeterministic: it is plotted in the
order in which it is found in the MeasurementSet. The sort command allows the panels
to be sorted on the labels for p(olarization), s(u)b(band), ch(annel), b(ase)l(ine),
s(ou)rc(e), time, if they appear in the panel title

Please refer to the colourful PDF, sections “5. What’s on screen” and “6. Oh my label!”
(both on p.5), and “10. Tinkering with the layout, … etc.” (p.10)

Phase across the band

Another diagnostic to look at is phase of the complex cross-correlation spectra as

https://github.com/haavee/jiveplot/blob/master/doc/jplotter-cookbook-draft-v2.pdf

19/09/2025, 19:58SFXC workshop 2025

Page 15 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

function of frequency. If there is a ‘fringe’ between two stations, this shows as a well-
behaved/well-defined phase-versus-frequency relation. Sometimes it can highlight
issues in the equipment - e.g. the phase between different pieces of hardware not
being connected. This can be calibrated out (as long as it’s stable), but sometimes it is
a sign that some piece of equipment is synchronized differently than others.

As with the “Amplitude versus frequency” plots, this requires averaging for the most
useful results - but this time avt vector is needed: the quantity of interest is the phase
of the averaged complex number (not the average of the phases of the complex
numbers - see scalar or vector averaging).

It may be relevant to decide how the time averaging is to be performed. Collapsing all
timeseries into one phase per baseline, subband, and polarization would average out
any details. A usable approach is to select ~10s worth of data out of a calibrator scan.
Using the scan based selection, for example from the colourful PDF, section “8. Scan-
based data selection”.

The number of baselines in a data set can grow large quickly. Therefore usually only the
baselines to a known-good and/or sensitive reference station are inspected; the other
baselines are combinations between them (much like how the selection for the weight
plot was narrowed down to only the relevant weights). The b(ase)l(ine) (bl) command
can be used to very efficiently select those in a way that works on any measurement
set (see also help bl).

Summing it all up:

select the p(lot) t(ype) pha(se vs)freq(uency)
jcli> pt phafreq

now we want to look at the cross-baselines to a reference antenna
the r(ange) command with argument ant(enna) shows the antenna names in
the data set.
pick one. (hint: the correct answer is 'Ef', nearly always)
jcli> r ant
...

select all baselines to the chosen reference antenna
do not forget to remove the auto baseline of refant with itself :-)
jcli> bl <refant> -auto

see above
jcli> avt vector

https://github.com/haavee/jiveplot/blob/master/doc/jplotter-cookbook-draft-v2.pdf

19/09/2025, 19:58SFXC workshop 2025

Page 16 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

Run indexr, if not already done
#jcli> indexr
Check the list of scans to locate scan of interest
remember the scan number
jcli> listr
...

Snazzy scan-based data selection!
jcli> scan mid - 5s to mid + 5s where scan_number = <selected-scan-
number>

and pl(ot) again
jcli> pl

NOTE: the plot properties (colours, line widths, layout, &cet.) are kept per plot
type. Changing to a different plot type may mean re-setting some of the p(lot)
p(roperties).

This has both advantages and disadvantages. For now jplotter leans towards it
having slightly more advantages than disadvantages, but motivated GitHub issues
are welcome!

Amplitude + Phase versus time

This is a very insightful diagnostic plot. When plotted over the whole experiment it
shows the long-term amplitude stability as well as the slow-changing (if everything is
working fine) phase over time.

For this plot the amplitude and phase of a “channel” (a frequency point) is tracked over
time. But, as above, a single frequency channel’s behaviour over time is noisy, and
therefore doesn’t contain much signal. As seen in the phase across the band plots, if
everything is working, there is a reasonable well-defined behaviour of the phase versus
frequency (or channel).

To increase the signal of a single spectrum channel averaging, using the av(erage)
c(hannel) (avc) command can be used. Like the avt command there is a choice of
scalar and vector. Since the phase across the band needs to be collapsed into a single
value, vector averaging must be used.

19/09/2025, 19:58SFXC workshop 2025

Page 17 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

It is not wise to average all spectral channels of a subband. Looking at the bandpass
plots it can be seen that the lowest and highest channels in the subband contain little or
no signal: the amplitude drops to ~0. This is due to the fact that the VLBI equipment
uses a bandpass filter to isolate the requested subband frequencies out of the sky
signal.

A rule of thumb sais the inner 80% of the band should contain usable signal. Therefore
we need to sub-select these channels out of each subband. jplotter has a
convenient data selection that allows doing this irrespective of actual number of
spectral channels in the data set, using the ch(annel) command. See help ch for a brief
explanation.

Putting it all together, to produce this diagnostic plot, the following steps are needed:

select p(lot) t(ype) **a**(mplitude a)**n**(d)**p**(hase vs)**time**
jcli> pt anptime

remove any existing time selection - in principle the whole experiment
should be plotted
jcli> time none

again, only cross-baselines to a reference antanna are useful
jcli> bl <refant> -auto

Nifty 80%-of-the-subband selection mechanism, works on every data set
jcli> ch 0.1*last:0.9*last

time averaging? don't do that!
jcli> avt none

channel averaging? yes please, the vector flavour
jcli> avc vector

and pl(ot) again
jcli> pl

NOTE: jplotter by default gives each plot the same x/y - axis scale, allowing for
direct comparison of the data

In a plot like this, where it’s likely that due to the different amplitude responses on
the different baselines, a lot of detail could be missed: one very strong baseline
will “push down” the signals in the other baseline plots

https://en.wikipedia.org/wiki/Band-pass_filter

19/09/2025, 19:58SFXC workshop 2025

Page 18 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

Using the y0 command, each plot can be given it’s own y-axis scale:

jcli> y0 local

See also help y (and help x) for explantion and more options.

Displaying the ACTUAL FRINGE!

So far only spectra and derived quantities have been plotted. But the easiest way to see
if the correlation actually worked, is to look at THE FRINGE! This topic, whilst highly
interesting, has been left as the last because … it requires creating a different
measurement set!

The j2ms2 tool, introduced under Translate to Measurement Set, allows for the
visibilities computed by the SFXC correlator to be written out in the ‘LAG’ (or ‘time’)
domain. The MeasurementSet has support for this natively, but not many tools do.
jplotter does.)

Add the -d time command line option to the j2ms2 command and change the output
MS name, usually adding a “-lag” somewhere to indicate it’s ‘LAG’ data:

$> cd /path/to/EXPERIMENT
$> j2ms2 -d time -o EXPERIMENT-lag.ms *.cor
...

To display THE FRINGE, it’s basically a time-averaged amp(litude versus)chan(el) plot
on the cross-baselines for a useful time range. Select a scan, or part of a (calibrator)
scan, using the mechanism(s) illustrated above.

open the just created m(easurement) s(et)
this automatically clears any data selection!
jcli> ms EXPERIMENT-lag.ms

reset plot properties

19/09/2025, 19:58SFXC workshop 2025

Page 19 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

jcli> reset

select p(lot) t(ype) amp(litude versus)chan(nel)
jcli> pt ampchan

only cross baselines to a reference antenna
jcli> bl <refant> -auto

select all p(arallel) hand polarization products from all ('*')
subbands
jcli> fq */p

select a time range, scan, or part of scan
(the first minute of the experiment here - who knows)
jcli> time $start to +1m

average "the fringe" in time
it's only an amplitude, so scalar averaging is OK
jcli> avt scalar

I think we're good to go!
jcli> pl

Export to FITS-IDI

The jive-casa toolbox comes with two programs:

j2ms2 for correlator output MeasurementSet format

tConvert for MeasurementSet FITS-IDI format

If the correlated data cannot usefully be processed using CASA , or other tools that
operate on MeasurmentSet, or inspected using jiveplot , then maybe exporting to
FITS-IDI format is a last resort.

The basic use should be literally as simple as this, provide the input MS name and a
desired FITS-IDI output file name:

$> tConvert <input-ms> <output-fits-file>

→
→

https://casa.nra.edu/

19/09/2025, 19:58SFXC workshop 2025

Page 20 of 20https://jradcliffe5.github.io/sfxc_workshop_2025/correlation_post.html

Unless the <input-ms> was created in a bizarre way - e.g. mixing data from different
experiments, or from different correlator setups - the process should Just Work™. The
key issue to be aware of is that the MeasurementSet format allows much more than
what can be represented in FITS-IDI format. tConvert does all kinds of checks on
<input-ms> to verify that in principle the translation can be done.

See the full tConvert documentation for all intricate details and slightly more
advanced use cases that tConvert supports.

https://code.jive.eu/verkout/jive-casa/tConvert.md

