JOINT INSTITUTE FOR VLBI IN EUROPE

OUDE HOOGEVEENSEDIJK 4, DWINGELOO

Telephone: +31 (0) 592 596500
Fax: +31 (0) 592 596539

26 September 2015

TO: Distribution
FROM: Harro Verkouter (verkouter@jive.eu)
SUBJECT: cookbook draft v2 for jplotter v0.4 and higher
amplitude+phase versus channel EAO58D data: EA053D—no0021—sfxc—prod.ms
unique: sess114.C1024/14:36:30.00/0528+134 verkout@<???> 2015-09-28T12:30:08
Pol=LL,RR;Nsub="*:; page: 1/7
[Vector avg'ed 0/14h36m19.00s—>14h36m39.00s]
E T T T 4 T 3 ; T ~—
“ol wﬂ : J aman' b = . N : -
—100 [‘A;A“ } ~— ‘ ‘ Ler ~100 ’__JLQ b L_,‘_.JL——_/A
4x10704F ‘ ' RfHh ‘ o1 b : BNt ‘ E
3x107% 4 ’
2x107% 4 5x1073 4 E
1078
o ulti SB \ \ \ \ 0 ulti SB \ \ \ \
108 7 j } | B }] } ! I) . 108 ,1’; \A‘NA“:’T M '*‘L/P(| l } \ P
~100 zﬁlqﬁiﬁ!\cg‘bi ‘ L“*_« ~100 & ‘ V ‘ Lﬁ‘/f‘\ Ve
‘ - _Efon. ‘ 3x107 ‘ \\ BEfSh ‘ E
5x10-3 4 2x107° 4 =
10734
0 ulti SB | | | | 0 ulti SB | | | |
E — T T T T 3 3 T T T T
108 [! | \ | | //T_/M f\ 108 F/\—T—\Al : - | —
o ‘ IS s S A MR
001 b B T T EfSV T T] 0.02 & T T fTr T T 4
f‘\’ﬂ 0.015 {£ < E
5X1073 \m m i
5x1073
o fmutti 58 ‘ ‘ ‘ ‘

e

ulti S\E/\
0
0

T
—— i i
fZc
Il Il
50

AR

150

LL/SBS
RR/SBY

RR/SB4
LL/SBO

RR/SB3
RR/SB5

1L/SB1
RR/SB6

L1/SB4
L1/SB3

LL/SBS

100 150

RR/SB2 LL/SB? RR/SBO RR/SB1

1. The jplotter program

The jplotter program is a Python based program for displaying fundamental properties of
(time/frequency averaged) radio-astronomical data stored in Measurement Sets (MS)!, e.g.
amplitude and/or phase of the complex data as function of time, frequency or UV-distance, as

witnessed above.

This document aims to describe the high-level ideas and features of the program and
installation instructions for the dependencies rather than just documenting the commands;
specifically because the program comes with all command documentation built-in and

available at runtime.

! The Measurement Set is both a data-model description as well as an implementation of this model in C++ in
the Common Astronomy Software Applications package (CASA) - http://casa.nrao.edu/Memos/

229.html

Page 1 of 18

Jjplotter cookbook - v0.4 and higher

2. Running the jplotter program

Assuming the jplotter program has been installed (see Appendix A) it can be run:
$> /path/to/jplotter [options]

Currently the supported command-line options are:

-h help on startup parameters; other options are ignored if —h is present
v display the current version and exit succesfully
-d

run in debug mode: print a stack trace in case of error

The program will display a prompt, at which three useful basic commands are immediately
available: exit, 1list and help:

+4++++++++++++H+H++++H+++ Welcome to cli +++++++++++++++++++

$Id: command.py,v 1.13 2015-09-21 11:36:22 jive cc Exp $
'exit' exits, 'list' lists, 'help' helps

jcli>

From here on, text in this font will represent a command that can be typed at this
prompt. Help on such a command can be retrieved by typing help <command> at said
prompt. In general, jplotter commands are one- or two letter long mnemonic abbreviations.
Running a command without argument(s) usually displays its current setting or value. jplotter
features tab-filename completion and command line history if readline is installed.

3. Theory of operation

For most plots the basic unit of data is the complex numbers found in the data column of a
Measurement Set - the visibility data matrices of dimension #fieq X Hpolarizations. MoOst plot types
will display (meta)data of these complex numbers.

In general, plotting using jplotter will follow these steps:
1. open a Measurement Set using ms
2. choose the plot type using pt (1p to list the available plot types)
3. [narrow down the data to be displayed - see section 6]
4. [fiddle with the details of how the plots are presented - see sections 9, 10]
5. use pl to tell jplotter to (re)plot the data; navigate multiple pages (section 11)

jplotter has no particular feelings as to the order in which these steps are done other than the
logical ones: it is impossible to (de)select data or make the plots unless a data set is opened to
(de)select data or make plots from. Steps in square brackets are optional.

A word of caution about step 3. This one is indicated as an optional step. By default jplotter
will plot every complex number in the Measurement Set, unless it’s been told to limit the
selection to a particular subset of data or some averaging is to be done! Needless to say that
in a typical observation there are quite a few complex numbers?.

In reality there could be a number of optional sub-steps inserted between opening of a data
set and the “go!” signal - it all depends how far down the rabbit hole you want to go.

2 In theory plotting a large selection should finish, eventually. The information content on screen may be under-
(or even over-)whelming though.

Page 2 of 18 Jjplotter cookbook - v0.4 and higher

4. The first plots

Let’s look at what’s possibly the simplest plot(s) that can be made. This is a transcript of a
minimal jplotter session. The commands to be typed are highlighted.
jcli> ms EAOS53D.ms

ms: Current MS is 'EAOS53D.ms' containing 5891040 rows of Spectral data for EA053D
jcli> pt wt

plotType: wt [weight versus time]
jcli> pl

Data munching took 90.282s

min/max processing took 0.338s

Jjcli>

In words this reads: “Open the EA053D.ms Measurement Set, set plot type to weight-versus-
time and plot me this”.

Steps 3. and 4. of the workflow (data selection, plot presentation; see previous section) have
been skipped: it takes ~90 seconds? to process all of the approximately 6 million rows of
weight data. 20 pages of plots with possibly a little bit too much information to comprehend
are created:

weight versus time data: EAO53D.ms
unique: sess114.C1024 verkout@<???> 2015-09-29T09:24:53
Pol=LL,RR;Nsub=*;:Ch="*: page: 1/20
T T T
L OnYs]
- R . A B DRSNS . . 1
P W Y. . T et .042.2'7054- - . '.
ori4+008, LT .. . LT e . oo %
. .« P L e L . . e .. . -]
05 F) T S S M HE R e Ry Tl
e . . -
- B . . P
. . : .
. e el 3
0 t t t u 1 t t
T T T T T T T
L McTr]
0422+004
04144009
05 0528+134 i
0 t t t f t t —t
T T T T T T T
L YsYs]
t. . . .
. tLe 042240080 <)
0414+009 , -
05 - T e, o Tt L osgesise t T Lt . il
0 — e e =, : — : 1
T T T T T T
s rezam ..:.::-SVHh. - eezzgoony 1
) bissoapt :
0414%009 , + . P . R
05 . . L ° . o+ 0528+134 N L -
0 : : : : : —— : : t = : r : e
12h30™ 13"o™ 30™ 14ho™ 30™ 15"0™ 30™
RR/SB7/0422+004 LL/SB6/0528+134 LL/SB1/0414+009 RR/SB1/0528+134 RR/SB6/0528+134 RR/SB5/0528+134
LL/SB5/0422+004 == LL/SB3/0528+134 == RR/SB2/0422+004 LL/SB0/0528+134 === RR/SB6/0422+004 == LL/SB4/0422+004
LL/SB0/0422+004 RR/SB7/0414+009 RR/SB0/0414+009 LL/SB4/0528+134 LL/SB0/0414+009 RR/SB5/0414+009
——— RR/SR1/04724004 = RR/SR7/05PR4134 = 11./SR7 /04994004 LL/SRP /04144000 = L1L/SR1 /04774004 = RR/SRP /04144000

The take-away messages here are:

* nothing needed to be known about what is contained in the MS; the command was to
create weight-versus-time plots and that’s what it did. It finds polarizations, baselines,
sources &cet. all by itself

* if no data is selected, everything is plotted

* each plot type has a default layout and plots are organized by baseline by default

Let’s see if we can improve on both the speed and information content!

3 Plotting can always be interrupted by pressing ~C (control-C)

Page 3 of 18 Jjplotter cookbook - v0.4 and higher

The weights on cross-correlations are a combination of the auto-correlation weights for the
data that went into that cross-correlation. Therefore all cross-correlation weights provide
redundant information.

For useful weight-versus-time plots it is therefore sufficient to find all the auto-correlations
and plot their weight.

The baseline selection command b1 can be used to select only the auto baselines. The pseudo
baseline name auto narrows the data selection to those baselines where both inputs to the
baseline are the same antenna:

jcli> bl auto
baselines: JbJb WbWb EfEf McMc NtNt OnOn ShSh TrTr YsY¥s SvSv ZcZc HhHh

The software knows by itself which auto-correlation baselines are present in the MS.

Although this is an improvement, it does not strictly select auto-correlations. An auto-
correlation is the same signal with itself. If all polarization products are formed by the
correlator then this still does not de-select the cross-polarizations.

Through the £q command it is possible to quickly select only the parallel hand polarizations
(“/p” for parallel hands; “/x” for cross hands) for all subbands (“*”) in the dataset:

jeli> fq */p
fregsel: 0/0:7/0:RR,LL

The reply says that from frequency group 0, the polarization combinations RR and LL from
subbands 0..7 have been selected - exactly what was desired. Note that this will typically not
work on ALMA MSs because of their non-standard SPECTRAL WINDOW table. More on
this later.

Re-running the plot command to update the plots yields:

jcli> pl

Query took 0.775s

Data munching took 15.498s
min/max processing took 0.049s

So now it finishes in 15 seconds and produces only three pages of plots:

EBAOS3D
weight versus time data: EA0O53D.ms
unique: sess114.C1024 verkout@<???> 2015-09-29T10:22:09
Pol=LL,RR;Nsub=8;;Ch==; page: 1/3

- ‘ VeYs]

Page 4 of 18 Jjplotter cookbook - v0.4 and higher

5. What’s on screen

This is an appropriate time to digress a little. In order to understand how jplotter divides data
sets into plots, a little background about how data is processed, accumulated and labelled is
needed.

Jjplotter accumulates individual data points
into datasets: a series of (x, y) points. Each
dataset gets values for each of the seven
labels: TIME, SRC, BL, FQ, SB, P, CH (see
NS | below), bar the current x-axis.

EA053D
TV

data: EAO53D-no0021-s

g'ed 0/14h36m19.00s—>14h36m39.00s]

(" PLOT LABEL

All dataset labels are analyzed for common

LABELS SHARED (i.e. redundant) values, which are removed
BY ALL DATASETS and displayed in the top-left-hand side of
the page.

o

: : : : Finally, the distinct combinations of label
DATASET LABELS ’ .
(LEGEND) values for the set of labels set in the new
command define the plots in which a
dataset is drawn.

The remaining labels are the actually useful dataset labels and are plotted as legend in the
bottom part of the page. The default new setting is FQ BL, saying as much that for each
observing mode (FQ) and baseline (BL) a plot is generated, with all data sets for that
combination overplotted.

6. Oh my label!

It may be less obvious from the previous section that the dataset labelling plays an important
role in the jplotter program. The reality is that the labelling comes up in almost every facet of
the plotting from changing the appearance of the plots through data selection.

Throughout the jplotter program the following seven label types/names will be almost
consistently used:

])

TIME TIME The time stamp of the data point

SRC SOURCE The name of the associated FIELD of this data point

BL BASELINE The baseline on which this data point was measured

FQ FREQUENCY GROUP The frequency group name (a.k.a. the frequency setup name or observing mode)
SB SUBBAND The subband number within the frequency setup

P POLARIZATION The (human readable) polarization combination of the data point

CH CHANNEL The channel number of the data point

Page 5 of 18 Jjplotter cookbook - v0.4 and higher

7. Data selection and labels

Jjplotter views a Measurement Set as a seven-dimensional array, or rather, the data as having
seven axes. It should not come as a surprise that these correspond to the label types
mentioned in the previous section.

In order to allow selection of data (the optional 3™ step in the workflow), jplotter holds the
view that each of the seven axes has a range of values which it represents. See the one-letter
r command, which is (very) short for range.

After opening a Measurement Set, the r command can be used to get a quick overview of
what is actually contained in this data set:

jcli> ms EA053D.ms
ms: Current MS is 'EA053D.ms' containing 5891040 rows of Spectral data for EA053D

jeli> r

listFreqgs: FREQID=0 [sess114.C1024]

listFreqgs: SB 0: 4926.9900MHz/16.0MHz 32ch P0=RR,LL
listFregs: SB 1: 4942.4900MHz/16.0MHz 32ch PO=RR,LL
listFregs: SB 2: 4958.9900MHz/16.0MHz 32ch PO=RR,LL
listFregs: SB 3: 4974.4900MHz/16.0MHz 32ch PO=RR,LL
listFreqgs: SB 4: 4990.9900MHz/16.0MHz 32ch P0O=RR,LL
listFreqgs: SB 5: 5006.4900MHz/16.0MHz 32ch P0=RR,LL
listFregs: SB 6: 5022.9900MHz/16.0MHz 32ch P0=RR,LL

listFregs: SB 7: 5038.4900MHz/16.0MHz 32ch P0=RR,LL

listAntennas: Jb (0) Wb (1) Ef (2) Mc (3) Nt (4) On (5) Sh (6)
listAntennas: Tr (8) Y¥Ys (9) Sv (10) Zc (11) Hh (13)

listSources: 0414+009 0422+004 0528+134

listTimeRange: 06-Mar-2014/12:30:00.500 -> 06-Mar-2014/15:29:59.481 dT: 1.000

Depending on the type of the label the selectable range can be either:

list of discrete values e.g. sources (SRC), baselines (BL), polarization (P)
continuous range e.g. TIME (start-time through end-time)

index array 0..n e.g. subbands (SB), channels (CH), frequency group/setup

Note that the r command does not, by default, display all baselines but rather just the
antennae that were found. The actual list of baselines can be inquired using r bl (“display
the range of the bl label”).

Through the use of commands like time, src, £q, bl or ch the data selection can be
narrowed to the desired subset of values. The s1 command - from selection - gives an
overview of the full current selection:

jcli> sl

fregsel: 0/0:7/0:RR,LL

channels: No channels selected yet

baselines: JbJb WbWb EfEf McMc NtNt OnOn ShSh TrTr YsYs SvSv ZcZc HhHh
sources: No sources selected yet

time: No timerange(s) selected yet

Each of the selection commands has a syntax of its own which typically allows for advanced
data selection, specific to the type of interest. A lot of time has been invested in giving each
selection command a means of selecting data based on ‘logical’ values rather than physical
ones.

The next section should give some idea of what they can do.

Page 6 of 18 Jjplotter cookbook - v0.4 and higher

For all discussed commands below the reader is cordially invited to read the online help
inside jplotter for the command of interest. The help <command> tells all.

The time command allows selection of (multiple) time range(s) of interest.
t ime The symbolic constants $start, $mid, $end and $t_int (which dynamically
evaluate to values for the current data set) can be used together with arithmetic
and human readable time formats. This allows for natural-looking time
selection commands like time $start to +1hr1O0m to select only the first hour-and-
ten-minutes from the experiment. Also check the scan command further down for

(Y34

convenient scan-based selections. Multiple time ranges are separated by “,” (a comma):

jcli> time $start to + 5 * t_int , Send - 1lh to +20m
time: 06-Mar-2014/12:30:00.500 -> 06-Mar-2014/12:30:05.500
time: 06-Mar-2014/14:29:59.481 -> 06-Mar-2014/14:49:59.481

The baseline selection command b1 was already introduced earlier. It supports

bl the pseudo baseline names auto and cross which select what one would
imagine. “All baselines to Ef” becomes bl ef*. Or try this: “all baselines to
either Jb or Hh”: bl (jb|hh)*

The b1l command supports multiple arguments. Each argument is a ‘selector’ and selects one
or more baselines. The arguments are evaluated from left-to-right and a set of selected
baselines is built. Each selector can add (default) or subtract baselines from the set so far. All
cross-baselines to Ef would easily be selected as bl ef* -auto. The minus sign indicates
to remove baselines matching the selector from the set.

The src source selection command is much like the bl command: it compiles
src a set of sources (de)selected by the argument(s) to the command, evaluated
from left-to-right. Being a text based selection mechanism, common UNIX
shell wildcards (“*” and “?”) are supported: src j19* selects all sources
whose name start with ‘j19’ (case insensitive). A limited form of regular expression syntax is
supported: sre 3¢ (18]192) selects both sources 3C18 and 3C192.

This is the main subband/polarization selection command. Subbands are

f q numbered 0..n (as relabelled by jplotter?) within a frequency setup or group.
For most data sets it will present the frequency information in a natural
manner, to wit the output of the r command.

A bit was unveiled earlier when only the parallel polarization combinations for all subbands
were needed. The very short £q */p effected just that. The £q command also accepts
multiple arguments to select multiple, specific, subband+polarization combinations. For
example £fq 1,2/rr 5:7/1* would select the RR polarization from subbands 1 and 2
and LL and LR from subbands 5 through 7 (inclusive).

The frequency selection is completed by the ch command, to select channels

ch inside all selected subbands (see the £q command above). Channels are
numbered 0..n. The pseudo values first, mid and last are defined, which can be
used in simple arithmetic expressions. The author’s favourite is the magic

ch 0.1*last:0.9*1last which selects the inner 80% of the channels of each band, or
this one: ch mid-2:mid+2 to select just a few channels around the center.

4 Read the help for both the ¥ and mS commands, specifically about how meta data is dealt with in jplotter and
what you can do to alter the behaviour in case it is not appropriate. ALMA Measurement Sets do come to mind.

Page 7 of 18 Jplotter cookbook - v0.4 and higher

8. Scan-based data selection

The previous section dealt with data selection methods that operate directly on the meta data
of the MS. Sometimes that is just not adequate. A typical observation consists of a number of

scans; separate observations on some source at a particular frequency.

indexr -
listr data. If this has run succesfully:

jcli> indexr

Running indexr. This may take some time.

indexr: found 29 scans. (use 'listr' to inspect)

then 1istr can be used to inspect the scans indexr has found (the output has been

snipped for brevity; not all 29 scans are shown):

jcli> listr

1l: 06-Mar-2014/12:30:00.500 5m28.98s dT:
06-Mar-2014/12:36:00.500 5m28.98s dT:
06-Mar-2014/12:42:00.500 5m28.98s dT:
06-Mar-2014/12:48:00.500 5m28.98s dT:
06-Mar-2014/12:54:00.500 5m28.98s dT:
06-Mar-2014/13:00:00.500 5m28.98s dT:

.00s 0414+009
.00s 0414+009
.00s 0414+009
.00s 0414+009
.00s 0414+009
.00s 0414+009

o WwN
e ee e ee ae
e)

(0)
(0)
(0)
(0)
(0)
(0)

The indexr command will attempt to regenerate the list of scans from the MSs

(ARRAY_ID
(ARRAY_ID
(ARRAY_ID
(ARRAY ID
(ARRAY_ID
(ARRAY_ID

It shows the basic properties of each scan like start time, duration, which integration time was

used and which source was observed.

Other than cosmetics, having a list of scans in memory enables the very powerful scan
selection command. In its simplest form it can be used to just narrow down the data selection

to specific scan(s), selecting them by scan number:

jcli> scan 10-12 21 29

10: 06-Mar-2014/13:24:30.500 4m58.98s dT:
11: 06-Mar-2014/13:30:00.500 5m28.98s dT:
12: 06-Mar-2014/13:36:00.500 5m28.98s dT:
21: 06-Mar-2014/14:31:30.500 9m58.96s dT:
29: 06-Mar-2014/15:25:00.500 4m58.98s dT:

.00s 0422+004
.00s 0414+009
.00s 0414+009
.00s 0528+134
.00s 0422+004

=R e

(1)
(0)
(0)
(2)
(1)

(ARRAY ID
(ARRAY ID
(ARRAY_ID
(ARRAY_ID
(ARRAY_ID

In the not-so-simple form, the scan command implements a SQL-like syntax to extract time

ranges from (a selection of) scans; those matching criteria, if given.

This command will select 10 seconds worth of data out of every scan (again the output’s been

snipped). You’ll see that the ‘scan duration’ is now exactly 10 seconds:

jcli> scan mid-5s to mid+5s
1: 06-Mar-2014/12:32:39.989 O0m10.00s dT: 1.00s 0414+009
2: 06-Mar-2014/12:38:39.989 Om10.00s dT: 1.00s 0414+009

0)
0)
0)
0)
0)
0)

0)
0)
0)
0)
0)

(0) (ARRAY ID 0)
(0) (ARRAY_ID 0)

Assume some observing system is guaranteed to yield valid data only in the last minute of a
scan. The following ‘query’ selects the last 20 seconds of data out of every scan that is both
on the target source 0422+004 and is longer than 1 minute (to make sure it has valid data in

this hypothetical system). Apparently only three scans match:

jcli> scan end-20s to end where length>60 and field ~ '042*'
10: 06-Mar-2014/13:29:09.481 0m20.00s dT: 1.00s 0422+004
20: 06-Mar-2014/14:29:09.481 0m20.00s dT: 1.00s 0422+004
29: 06-Mar-2014/15:29:39.481 0m20.00s dT: 1.00s 0422+004

(1) (ARRAY ID 0)
(1) (ARRAY ID 0)
(1) (ARRAY_ID 0)

Page 8 of 18 Jjplotter cookbook - v0.4 and higher

9. Time and/or frequency averaging; impact of solint and weight threshold

A very good diagnostic plot is phase-versus-time. For data in the frequency domain this
means that the phase across the band needs to be averaged. In the time (lag) domain, the
phase is the phase of the central lag.

With sources that have low signal-to-noise, it may be necessary to perform time averaging of
a number of spectra before a signal becomes visible in the amplitude-versus-channel plot.

Jjplotter supports both time and/or frequency averaging of data before plotting.
The settings are controlled via the ave (average channel) and avt (average
time) commands. For both three averaging methods exist:

avc
avt

None No averaging is performed. Each channel (*-versus-time) or each
spectrum (*-versus-channel) is plotted individually

Vector The complex data are averaged before computing the desired quantity,
e.g. amplitude or phase. The code computes phase(avg(data))

Scalar The average amplitude or phase is computed: avg(phase(data))

Note that only under certain circumstances both time- and frequency averaging can be
supported. Usually, if either is the x-axis of your plot and jplotter is instructed to average that
down to a single point, the result is not going to be very helpful or even visible.

An important variable for the time averaging is the solint value. It can be set

solint using solint. It is named after its illustrous ancestor from the (Classic) AIPS
VLBI data reduction package. Its value is either none or a duration.

Depending on solint’s value, time averaging, if requested, does different things:
None All data for each individual time range will be accumulated and

averaged. Multiple time ranges can be selected through the time
command or, more interestingly, via the scan command (see previous).

duration The data will be binned in bins of duration length and then averaged. A
new time stamp is computed as the center of the interval. Using this it is
possible to ‘rebin’ data to make sure time stamps are aligned.
Alternatively a high time resolution data set can be ‘smoothed’ to lesser
data points.

Weight thresholding can be applied in the plotting. If not none, only data
points having their weight >= threshold value will be considered for plotting,
or, if set, averaging.

Jjplotter automatically chooses between WEIGTH or WEIGHT SPECTRUM
columns for the per-spectral point weight, giving preference to the WEIGHT SPECTRUM,
should that optional column be available in the MS. The WEIGHT column holds a weight per
polarization product and is virtually extended to give each channel the same weight. This is in
accordance with application behaviour as required in the MS version 2.0 defining document,
AIPS++ Memo 229, previously referred to.

Page 9 of 18 Jjplotter cookbook - v0.4 and higher

10. Tinkering with the layout, ordering, scaling, multi subband, colours etc.

All plots on the screen have a number of properties, the plot properties. Much as the s1
command gives an overview of the current selection, the pp command yields an overview of
the current plot properties, like type, layout and averaging settings:

jcli> pp

plotType: wt [weight versus time]
layout[wt]: 4 plots organized as 1 x 4
mark[wt/weight]: (none)

averageTime: None

averageChannel: None

solint: None

weightThreshold: None

new plots on: FQ BL

Mentioned earlier, pt is used to set the plot type; 1p lists the plot types.

t . .
i)p Examples are amptime, anpchan, ampuv for amplitude-versus-time,
amplitude-and-phase-versus-channel and amplitude-versus-uvdistance.
All plot types come with a default layout, roughly appropriate for the type of
nxy

plot. The nxy command can be used to quickly change (or inquire) the layout
for the current plot type: nxy 3 5 organizes plots in a 3 column by 5 row grid.

*-versus-time plots tend to be long, so they’re organized in one column: nxy 1 *, allowing
the full width of the display area for the time series.

*-versus-channel plots typically are organized in a two by four layout: nxy 2 4; spreading
out a single spectrum across the width of the display area would just look ... wrong.

mark’ing data points can be used to mark data points in a visually distinct
manner if they match a criterion of your choice. The mark command accepts a
single-line boolean Python expression involving the variables x, y or both. For
each data point (x, y) to be plotted, the expression is evaluated. All points for
which the expression evaluates to true are plotted with a large triangle symbol, to make them
stand out from the ordinary points.

mark

To see where the weight is less that 0.9, a simple mark y<0.9 would do:

Pol=LL,RR;Nsub=1;;Ch=*;[weight: y<0.9] page: 1/

YsYs

0526+134
0422+004

0.5 | 04144009

+ .&«...!—_

Page 10 of 18 Jjplotter cookbook - v0.4 and higher

But the marking goes deeper. For each separate data set, if marking is requested, the system
computes the average and the standard deviation. The results of this are made available in the
expression evaluation environment through the pre-defined variables avg and sd. Their value
will always evaluate to the respective value for the data set the (x,) point under
consideration is from.

Furthermore, all functions from the Python math module are made available without module
name prefix, like abs() and the trigonometric functions sin(), cos() etc.

To illustrate: in order to mark those points that are more than one standard deviation off with
respect to the average, the following expression could be used: mark abs (y-avg)>sd:

Pol=LL,RR;Nsub=1;;Ch=*;[weight: abs(y—avg)>sd] page: 1/6

T T

YsYs

1k o - — g

0528+134
0422+004

0.5 - 0414+009 . |

0 o A s i i |00 Yoot bbasaasal

I 1 1 1 1 I I

The role of the new command has been briefly explained in section 5. earlier.
Having the possibility to flexibly set plot < dataset ordering criteria gives the
user full control of how the data sets should be (over)plotted. Sometimes it is
desirable to compare the individual polarizations for the selected subbands
whilst another time it might be more illustrative to compare the individual subbands’
polarizations, as illustrated below. In both plots below spectra (pt ampchan) are
overplotted, only according to different new plot settings.

new

ol o= | This compares the spectra for all
sio0 | 1 . /;VETSE,@E;QD\ | subbands on each baseline +
X = < N— \\ \
02 / Y N\ polarization combination.
X - T \ B
7/ .
2x10° [4 A\ { The new command to provoke this is:
m ll‘ké/ | | | I I \k . .
0 B e e e = jcli> new all false bl,p true
0 5 10 15 20 25 30
sB2 SB3 SBO SB1 SB6 SB7 new plOtS on: BL P
o [mduss __ :| This plot compares the baseline
| __ RR/SB3 ' ‘ responses for each subband +
N — e polarization combination.

muiti SB | . .
L0 e e e e e e s e s e e e e s e e e

0 5 10 15 20 25 30

WbWb == ShYs === ShTr == WbOn OnYs
— N{On — rSy e hHh —JhSh = jbib JoNt
WbEf WbYs EfHh

Ri7c — QhSh — b

SvSv

— N — T — ST

— Tl — T — Sy

Page 11 of 18

The new setting for this was:
jcli> new all false sb,p true

new plots on: SB P

Jjplotter cookbook - v0.4 and higher

multi [Ifmultiple subbands are selected, then by default they will be drawn on top of
each other in the same plot>. But more often then not it’s more informative if the
whole (selected) spectrum is visualized i.e. that the individual subbands are
visible next to each other. Which presentation is best primarily depends on what the intent of
the comparison or visualization is.

There are two ways out of this conundrum:

1. add the subband label to the ‘new plot’ settings, such that each subband is plotted in a
separate plot: new sb true, however that may not be as easy on the eyes. (But see the
sort command later on.)

2. setmulti to true. When multi is true then multiple subbands drawn in the same plot
will be plotted next to each other in stead of on top of each other. multi’s default value
is false. Again the same data set was used as in the previous example (explaining the new
command).

. This plot was made with the following

0.015 i
settings:
0.01 NVJ\
jcli> new all false bl true
5x1073
new plots on: BL
0 ulti SB

\\\\\\\\\\\\\\\\\\\\\\\\

100 150 jcli> multi true
Ei//ii‘i i fffiff “w _ multisubband[ampchan]: True
sort Usually multiple plots are created from a selection. Each plot is labelled with the

unique values of the labels as set in the ‘new plot’ command new. jplotter draws

the plots in random order, filling pages as necessary. This makes for difficult
comparison; specific plots cannot easily be looked up. Use of the sort command can
overcome this by allowing the user to explicitly set a plot sorting order. The arguments to the
sort command are, once more, one or more label types (see section 6.) - plots will be sorted
by those labels. If more than one label types are given, the plots are first sorted on the first
label, secondly on the second etc.

Examples:

The following sort order groups all subbands together per baseline such that all subbands on
the same baseline can easily compared:

jcli> sort bl sb

whereas the this groups all baselines together by subband, such that for each subband the
different baseline responses can be compared:

jcli> sort sb bl

Some plot types look better drawn with lines (e.g. a spectrum) whilst phase
versus time looks better when drawn with points. Using the draw command it
is possible to tell jplotter to draw the plot type with either points, lines or both.
This setting is kept per plot type. See also the ptsz/1inew commands described below.

draw

5 if you haven’t played with the new command yet; see previous

Page 12 of 18 Jjplotter cookbook - v0.4 and higher

ptsz If the default point-size when drawing the plots with points or the width of the
linew lines when drawing with lines are not to taste, add a bit extra using the ptsz or
linew commands. The argument to both commands is just a number; the
requested point size/line width (this should, however, not come as a total surprise).

v[01] Jjplotter’s default behaviour is to give each plot the same scale such that the plots
can be directly visually compared. Under certain circumstances this may be
undesirable, e.g. when both auto- and cross-correlation spectra are plotted.

X

Using the x and y command the scaling of the indicated axis of the plots can be set to either
of the three values as described in the table below. In multi-panel plots (e.g. amplitude and
phase versus *), the scale of the individual panels can be set using the yO command for the
bottom panel or y1 for the top panel.

The scaling settings are kept on a per-plot type basis.

global The scale of each panel is set to fit the global minimum and
maximum over all data sets displayed in all plots.

local Each panel will be scaled to fit the minimum and maximum of all
data sets displayed in that panel.

<min> <max> Set an explicit scale by manually providing a minimum and
maximum value. All panels get this scaling.

Another command that combines a mini-language and label types. jplotter’s

default data set colouring algorithm is quite simple: each unique data set label

gets its own color. Again, not always is this the best choice. Specifically for
those occasions jplotter allows (very) fine grained control over the data set
colouring algorithm via the ckey (colour key) command. If desired specific values can be
given a specific colour. The syntax is documented in the ckey help documentation.

ckey

The two plots below should give an idea of what the ckey command does. The same plot as
under the description of the multi command is used.

L
T T

. : ' Each data set - a combination of a

A | subband and a polarization - has its own
‘ 1 colour. Presented like this, the colours
ﬂ ﬂ per subband do not add information
ult 58 1 1 whilst at the same time it is difficult to

’ > o e =0 see which polarization(s) fail in subbands

RR/SBO =

LL/SB3 6 and 7 X

0.015
0.01

5x107%

LL/SB6 RR/SB4
RR/SB7 LL/SBO

LL/SB7 RR/SB5
LL/SB1 LL/SB2

oos F ' After issueing the following command:

oor b [\VW r“JW f“/\ jcli> ckey p

| the plot looks like this. This instructs
|| jplotter to colour the data sets by
0 50 100 150 200 p(olarization) only and the affected
polarization is readily identified.

5x1073

Page 13 of 18 Jjplotter cookbook - v0.4 and higher

11. Multi window/batch support, save plots to file, navigating pages of plots

The default graphics device is output to an X11 window. In the PGPLOT library, X11

windows can only be identified by number. The default graphics device is the X11 window
with number 42.

Jjplotter supports having multiple windows open at the same time. Due to restrictions in the
PGPLOT library this does not, however, extend to files: there can be only one file open for
plotting into at any instance of time.

Internally jplotter keeps plotting environments. Each individual environment has its own
graphics device, MS, selection, ‘new plots’ and plot type. Changes in either have no effect on
the settings in other ‘windows’ (let’s call them that for the moment). Note that changes in the
plot properties do affect the same plot type in other windows, if they are replotted.

The win command either displays the current window that processes the
commands or switches control to the indicated window. If the indicated window
did not exist yet, a new one will be created with no Measurement Set opened and
an empty selection. In order to display data into a freshly created window not
always a Measurement Set has to be opened; a previously stored set of plots can be
loaded with a different ‘new plots’ setting to name but one way.

win

i, £, 1 Itisnotuncommon for jplotter to produce multiple pages of plots. Navigation

[<j>]p can be done by jumping to the j™ next page jn (or jp for j* previous). The

[<j>]n number; is optional and defaults to 1 (one). £ goes to the first page, 1 (lower

<j> case ell) to the last. Just typing a number, j, jumps to that page. The i command

is for interactive mode. The £, 1, p, n commands can be used as if typed at the

command prompt (if the plot window is the X11 window with the focus). On systems where
the mouse is supported a right-click in the window moves to the next page, a left-click to the
previous page. Typing q in the window exits interactive mode.

file Switches to or creates a plot file for output. The argument to £ile is the file
name of the output file name. jplotter could handle multiple file(s) to be open at
the same time if the PGPLOT library would. By switching to an output file
before beginning plotting, output will go to file directly, without having to go through a
graphical window. This can be useful for batch plotting.

With the refile command it is possible to redirect the output of the current
environment to a new file, without creating a new environment. As such the
Measurement Set, selection, ‘new plots’ etc. remain unaffected. Any previous
graphics device associated with the environment is closed.

refile

Can be used to close the current plot device. This can be an alternative to the

B refile command - it allows plotting to a different file. Contrary to the refile
command, the close command takes down the whole environment with it.

save The save command allows storing the current plots in a PostScript file. By
suffixing the file name with /veps portrait mode is available; landscape (/cps) is
the default.

Page 14 of 18 Jplotter cookbook - v0.4 and higher

12. Miscellaneous: macro’s, play a script file, write out selection to new MS

Jplotter offers two methods to simplify repetetive commands: macros and script files.

macros are nothing but text substitutions and their use is limited, although
Jjplotter’s “smart” selection commands allow useful, MS detail agnostic,
macros.

macro

E.g. the following macro, when called as mk_phatime (after it’s been defined), plots the
phase-versus-time of the vector averaged inner 80% of the channels on all subbands on the
cross baselines and makes sure the plots are drawn with points.

jcli> macro mk_phatime ‘pt phatime; bl cross; fq */p; ch 0.1*last:0.9*last;

avc vector; avt none; draw points; pl’

.. time passes ..

jcli> mk_phatime
.. plots are made and drawn on the screen: profit!

The nice thing is that this macro works unmodified on almost all (VLBI) Measurement Sets.

Note that the macro definition is enclosed in single quotes to avoid the command interpreter
executing the command(s) rather than putting them into the macro’s definition. Macro
expansion is recursive; macros can expand to text containing other macros etc.

Another way to store a sequence of plot commands is to put them in a text file
play which can be played. In direct contrast to macros, the script can be passed

arguments when it is played. The way this works is that each (uncommented)

line of input in the script file becomes a Python string-formatting string. Any
occurrences of the form {<number>} will be replaced with argument number <number>
that was passed to the script, starting from 0 (zero) for the first argument.

The previous macro could have been put in a file, e.g.:

verkout@eee:~$ cat mk phatime.jpl

script to create phase-versus-time plots to reference antenna
needs two arguments: the MS name {0} and the refant {1}
ms {0}

set up plot - make sure points are used to draw

pt phatime; draw points

select cross baselines to the refant, parallel hand

polarizations and 80% of the channels

bl {1}* -auto; fq */p; ch 0.l*last:0.9*last

make sure averageing settings are correct

avt none; avc vector

and execute

pl

Besides being more readable and flexible, the script can be commented, which is always a
nice bonus.

The script can then be played from within jplotter as follows:

jcli> play mk_phatime.jpl EA053D.ms ef

The current selection (s1 to view current selection), ignoring channel/
polarization selections, can be written out to a new Measurement Set using the
write command. This will create a MS with referenced data: the new MS will
refer to rows in the MS whence the data came. Because it’s row based, the channel/
polarization selections cannot be honoured; these would select inside a row’s data matrix.

write

Page 15 of 18 Jjplotter cookbook - v0.4 and higher

13. Arithmetic expressions with plots - straight difference or dividing or ...

Jjplotter can store (the evaluated value of) expressions, potentially involving previously
stored variables, as named variables:

jcli> store 3.14 as pi

jcli> store 2*pi/360.0 as deg2rad

Variables are named with an identifier; the first character must be a letter; subsequent allowed
characters are the alpha-numericals (i.e. letters and digits).

Besides simple values, jplotter can store the (value of an expression involving the) current
set of plots. What happens is that jplotter will evaluate the expression for each individual data
set. If an expression involves two sets of plots or more® - e.g. the simple difference “a - b” -
only the data sets within those sets-of-plots with identical label values are combined.

Just as when there is smoke it is implied that fire can usually be found in its vicinity, likewise
where there is store then load is generally not too far off.

Without an argument, store (as well as 1oad) print the currently defined variables:

jcli> store
Currently defined variables:

pi = 3.14
deg2rad = 0.0174444444444
= None

The current-set-of-plots does not have a name but is identified by the special variable ‘_’, the
underscore. Apparently, in this jplotter session, no plots were yet created.

The © ’is the “default argument” in the store and load commands. It is either the
store expression as name
load expression

expression or the name in the store command, but not both:
store expression is short for store expression as _

store as name is short for ~ store _as name

The 1load command explicitly loads the result of expression into the *_’ variable.

After loading a value into the ’ variable that describes a set of plots, the resulting plots are
drawn in the current graphical device using the current setting for ‘new plots’. If the result
was not a set of plots, nothing happens.

In these examples it is assumed that a MS was already opened and some plots created:

jcli> store as old_data # store current set of plots as old data

Open other MS, redo selection, make plots of that ..
jcli> store as new_data # store the new plots as new data

jcli> store # inspect what variables we have
new_data 'ampchan' from EA053D-no0021-sfxc.ms [1ll plots]
old_data "ampchan' from EA053D-no002l-sfxc-prod.ms [11l plots]
"ampchan' from EA053D-no0021-sfxc.ms [11 plots]

Let’'s open a new window

jcli> win 44

jcli> store old_data - new data as diff # store result of expression
jcli> load diff # plot straight difference
jcli> load old_data / new_data # or compute the ratio old/new

6 jplotter knows if a variable refers to a set of plots or not

Page 16 of 18 Jjplotter cookbook - v0.4 and higher

13. Putting it all together: fancy spectra plots (e.g. plot on page 1)

Let’s finish off with an annotated recipe for reasonably good looking and informative
diagnostic plots, using quite a few of the commands discussed above.

This sequence of commands computes time-averaged spectra of the parallel hands of
polarization of all subbands (however many there are) by scalar averaging 10 seconds of data
from each scan, giving the RR polarization the red colour and the LL polarization the green
colour.

Because we plot both auto-correlation as well as cross-correlation spectra the y-axes of the
plots must be individually scaled; the cross-correlation amplitudes typically are significantly
lower than the auto-correlation amplitudes.

The plots are sorted by baseline and then by time such that for each baseline the scan’s
performance through the different scans can be easily checked.

open the MS and index it
jcli> ms EAO053D.ms; indexr

we want time averaged spectra. These look best with lines
and with all subbands next to each other. Set y-scaling
to local on account of both auto- and cross spectra

jcli> pt ampchan; draw lines; multi true; y local

set time averaging, set solint to none such that each scan gets
averaged separately
jcli> ave none; avt scalar; solint none

do the selection - just select the parallel hand polarizations
and 10 seconds out of the middle of each scan

jcli> £q */p

jcli> scan mid-5s to mid+5s

we want a new plot for each baseline and scan (i.e. TIME)
and the plots sorted by baseline and time too

jcli> new all false bl,time true

jcli> sort bl time

we want to color the data sets by polarization;
specifically RR=red, LL=green
jcli> ckey p[rr]=2 p[l1l]=3

Let's go!
jcli> pl

Page 17 of 18 Jjplotter cookbook - v0.4 and higher

Appendix A.

jplotter depends on two external Python packages:

pyrap - for accessing the data stored in MS format. pyrap is the Python binding that comes

with casacore < 2.0. At this time there is no support for the python-casacore binding that
comes with casacore versions >= 2.0.

pyrap https://code.google.com/p/pyrap/

casacore <2.0 https://code.google.com/p/casacore/

ppgplot vi.4 - a Python binding to the PGPLOT graphics subroutine library. Although
ppgplot versions can be found all over the interwebs (e.g. https://github.com/npat-
efault/ppgplot) these are typically version 1.3 of the Python binding.

The author hosts a copy of the ppgplot-1.4 source code at:

http://www.jive.eu/~verkout/ppgplot-1.4.tar.gz

Future revisions of this document will likely contain more details about installing the
dependencies and the dependencies of those ...

Page 18 of 18 Jjplotter cookbook - v0.4 and higher

