

Obelics: WP3.4

Arpad Szomoru, JIVE

On behalf of Des Small, Mark Kettenis, Aard Keimpema

14-16/09/2016 Obelics F2F/ Madrid

JIVE - Joint Institute for VLBI ERIC -

- Promote and advance the use of VLBI for astronomy
 - Central correlation for European VLBI Network
 - Operational feedback to stations
 - User support
 - Preparation of observations
 - Data reduction
 - Improvement of VLBI technique in general
- Base budget from partners in 8 countries:
 - China, France, Germany, Italy, Spain, Sweden, United Kingdom, the Netherlands, South Africa
 - hosted by ASTRON
 - European Research Infrastructure Consortium (ERIC) since end 2014

EVN: European VLBI Network

- Consortium of radio telescopes
 - Involving 15 different organizations around the world in Europe, China, Puerto Rico, South Africa, Russia, South Korea
 - Optional inclusion of VLBA and LBA antennas, for global observations
 - Space-based VLBI with RadioAstron orbiting telescope
- Covering wide range of frequencies
- Operational approximately 60 days/year

First transatlantic VLBI, Onsala, Sweden, 1968

Basic plan

- Create a system that allows modern notebook-style approach to post-processing of VLBI data
 - Allow users to develop and run their pipelines on remote systems close to data
 - Minimize cost of shipping and processing of large data sets
- Allow easy and transparent sharing of pipelines, specialized for different classes of problems
- Speed up pipeline development
 - Combining re-evaluation inherent in notebook framework with smart caching system
 - Eliminates most redundant re-calculation when parts of a script are changed
 - Re-calculation engine: prototyped as part of our contribution to Hilado (RadioNet3)
- Notebook framework Jupyter
 - being adapted to the version of Python used by CASA.
- Deliver a small-scale version of a production-quality cloud-hosted data processing facility for EVN data correlated at JIVE
 - The code will be mature
 - Host hardware and network may not be industrial strength at the end of this project

Current activities

- Plumbing Casa into the Jupyter framework
 - Not trivial
 - CASA has a somewhat idiosyncratic approach to the Python environment
- Next step: embed CASA's interactive plotting into the Jupyter browser environment
- Re-write of prototype Haskell recomputation-elimination engine to Python, in order to make it work in CASA
 - Haskell probably not a good fit for a production environment
 - Haskell prototype essentially works on complete scripts
 - Jupyter version will need to work statement-by-statement
- Create a scalable cache of intermediate products
 - prototype was not designed to scale to long incremental sessions
- Preparing a draft of a scholarly paper on our methods