SKA Data Archive Requirements

Peter Hague

University of Cambridge

prh44@cam.ac.uk

SKA Data Archives

- Data products produced by SDP are to be archived on site, and then mirrored in part or in whole (*TBD*) at regional centres
- Limit on size of archive is primarily rate at which it fills rather than cost of storage
- Support multi-wavelength science at regional centres

SKA Data Archives

- MID is the South Africa site
- LOW is the Australia site
- Total archive requirements for both sites expected to be ~555PB over 5 years
- This is a minimum estimate

 ideally would like to make
 full use of 100Gbit/s
 connection to archives

Table 10: Archive size estimates, power requirements and cost

	A	В	С	D	Actual	Storage
	Data rate	Growth	Growth	Total	Power*	CAPEX
	in to	rate of	rate of	archive	associated	associate
	Archive	Archive	Archive	after 5	with total	d with
	(Gbits / s)	(TBytes /	(PBytes /	years	size in	total size
		day)	year)	(PBytes)	column D	in column
						D
MID (HPSOs)	9	90	34	170	99 KW peak	3.6 M€
					2 KW ave	
LOW (HPSOs)	3	30	11	55	32 KW peak	1.2 M€
Excluding EoR					0.7 KW ave	
uv archive						
LOW uv archive	22	220	77	385	225 KW	6.6 M€
					peak	
					4.7 KW ave	

*Note: Power estimate excludes PUE and power factor.

From SKA SDP (Science Data Processor) document number SKA-TEL-SDP-0000038

Worst case scenario

- 50,000x50,000 image with 65,536 channels ~1 petabyte
- 1 such image every 6 hours ~2 exabytes per year
- Most projects will discard either spatial or frequency resolution to some extent

Use case - THINGS

- The HI Nearby Galaxy Survey, using VLA L-band
- 1024x1024 images with 100 frequency channels
- HI flux and velocity maps of ~30 nearby galaxies
- Only interested in 21cm line; such a survey with SKA wouldn't use maximum number of channels

NGC 2403

Current project (ALMA)

- Source matching between an existing quasar catalogue (Veron 2010) and the ALMA archive
- Application of SExtractor to ~35 terabytes of data products
- Typical image 300x300, currently only investigating single channels

Current project (ALMA)

Red dots - ALMA sources Blue crosses - Veron (2010) quasars Circles - HWHM of observational hits

Scaling to SKA

- Takes ~10s per 300x300 channel on a typical machine
- So naive scaling to images that can be produced in SKA would take ~77 hours per channel
- Each full image with 2¹⁶ channels would thus take ~577 years using SExtractor in this manner

Summary

- Not enough to just store the archive it must be usable
- Geared towards multi-wavelength science
- Size presents more challenges for processing than for storage
- 3.4 D-ANA plans Bayesian source extraction