
Astronomy	ESFRI	&	Research	Infrastructure	Cluster	
	ASTERICS	-	653477

ASTERICS-OBELICS	Workshop	2016	/	Rome	14/12/2016 1

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant
Agreement number: 653477).

LIGO-Virgo	Collaboration	Computing	
Peter	Couvares	

LIGO	Laboratory	(Caltech)

1st ASTERICS-OBELICS Workshop
12-14 December 2016, Rome, Italy.

LIGO/Virgo Data Analysis

• Four astrophysics groups: Bursts,
Compact Binaries, Continuous Waves,
Stochastic
• Propose science goals, determine

analysis algorithms, write the
applications and run them

• Detector characterization group
supports the commissioning teams
and astrophysics groups
• Determines analysis algorithms,

writes applications, and runs them
to identify instrumental artifacts

• Diverse algorithms and methods
leading to heterogeneous demands
on computing infrastructure

2

Signal Duration

C
om

pu
ta

tio
na

l C
os

t

Bursts

Compact
Binaries

Continuous
Waves

Stochastic

Detector Characterization

NSF 1104371 no-cost ext. This proposal:
Data Handling and Analysis for GW Astronomy

2015 2016 2017 2018 2019 2020 2021 2022

O1 O2 O3 O4……….+Kagra

Requirements
• Analyze data in unison from a worldwide network of detectors to reduce

background and to enhance scientific output

• Low-latency analysis infrastructure - seconds to minutes

• Transient alerts and data quality information within seconds of data acquisition

• Rapid parameter estimation, verification, and follow-up automated (although
human vetting is still loop at this time)

• Offline infrastructure - hours to months

• Detector characterization feedback to commissioning and enhanced data
quality generation

• Deeper and broader searches for transients

• Searches for continuous and stochastic signals

• Parameter estimation, model selection and simulations

3

Executing analyses
• The bulk of our searches are embarrassingly parallel.
• All LIGO analyses and computing resources are

managed using HTCondor, which schedules work
and handles faults to ensure reliable execution of
embarrassingly parallel jobs.
• Broad use of single tools develops a knowledge

base in scientific user community
• LIGO and HTCondor team have a very close 15+

year-old collaboration.
• meetings every 2 weeks between senior staff
• feature development, big fixes, feedback

4

Implementing analyses
• HTCondor provides the Directed Acyclic Graph Manager

(DAGMan) for enforcing dependencies between jobs in a
large workflow.

• Workflows can have O(10^6) or greater individual jobs

• Extends fault-tolerance from jobs to entire workflows —
enables complex workflows to reliably restart from point of
failure.

• LIGO continues to use the Pegasus Workflow Management
System, developed by the USC-ISI group, that functions as a
layer on top of DAGMan for managing data dependencies.

• These tools also facilitate LIGO’s use of external resources.

5

Scale
• Data rates

• Channels per site: ~200,000
• Raw and Reduced data: 0.85 PB/yr
• Strain per IFO: 0.12 MB/s
• User data: 2.1 PB/yr

• Computing requirements
• SU=1 core hour on E5-2670
• O1 actual: 88 MSU (and counting)
• O3 estimated: ~1/2 billion SU

• Users on LIGO Data Grid
• ~600 users, ~300 active past year
• Top 20 users 57 MSU past year

6

100

200

300

50

150

250

350

M
SU

100

200

150

50

M
SU

Highest High Additional

Stochastic DetChar Burst CWCBC

Need by Priority

Need by Group

Prioritized Science Goals Define
LIGO’s Computing Scope

• Three priorities of computing
correspond to the priorities of LIGO
science goals.

• Highest: critical, core LIGO science.
78% of 2018 (O3) computing.

• High: valuable extensions to
astrophysical sources and
parameter spaces. 5% of 2018 (O3)
computing.

• Additional: higher risk/reward. 17%
of 2018 (O3) computing.

• Each planned search is in one of
these three categories.

7

Highest
78%

Additional
78%

High
5%

Computing Demand by Priority
Category 2018 (O3) Totals

~ 1/2 Billion SUs!

1 SU = 1 aLIGO Service Unit = 1 Intel Xeon E5-2670 2.6Ghz CPU core-hour.

Hardware Resources: Demand
• LIGO Data Analyses

• >90 prioritized GW searches and detector characterization
analyses.

• >60 software pipelines implementing them.

• Distribution of computing demand by pipeline: long tail.

• Top pipeline = 50% of computing demand.

• Top 10 pipelines = 90% of computing demand.

• Bottom ~70 pipelines = 10% of computing demand.

• Contrast with distribution of engineering & operations support effort
by pipeline: flatter.

8

DA Hardware Resources: Supply

• Many types of supply: dedicated, allocated, opportunistic. Many
providers in the US and abroad:
• Dedicated LIGO Lab clusters (HTC)
• Dedicated LSC clusters (HTC)
• Virgo clusters (mostly allocated on shared resources, HTC)
• PI clusters (shared, HTC and HPC)
• Campus/regional shared clusters (allocated, HTC and HPC) e.g.,

OrangeGrid, PACE, SciNet
• National shared supercomputers (allocated, HTC and HPC) e.g.,

XSEDE, Blue Waters
• Opportunistic cycles (campus clusters, DOE labs, HEP clusters, etc.)
• future: commercial cloud (EC2, Azure, Google, Rackspace, etc.)?

• Two runtime software environments: LIGO Data Grid, Open Science Grid

LDG

OSG

9

~83%
in O1

~17%
in O1

Analysis Metrics
• LIGO worked with Condor team to extend HTCondor to

enforce requirement that all jobs be “tagged” with strings
that identify their scientific goal.

• Each night, usage statistics are collected from LDG
clusters and partners in VIRGO

• LVC accounting system’s web interface allows all LVC
members to understand historical usage by cluster,
search, and user, and time period.

• Allows us to measure usage by each search and
compare to pre-run estimates

• All LIGO jobs in O1 were tracked! Accurate statistics by
science goal, search pipeline, activity (development vs.
testing vs. production), and observing run.

10

Computing Optimization
• Early LSC estimates for Advanced LIGO data analysis computing

needs were very high (billions of CPU core-hours), exceeding
projected computing resources.

• Funding agency (NSF) alarmed, and charged LIGO with two tasks:
prioritize LVC science (implicitly, in case something needed to be
cut), and demonstrate that our codes were extraordinarily efficient.

• It turns out they were efficient, but not extraordinarily so given their
scale.

• LIGO Laboratory organized a multi-year effort led by a new Data
Analysis Computing Manager position at Caltech, dedicated
optimization staff, and the regular attention of LVC management,
working group chairs, and search leads.

11

Computing Optimization
• In lead-up to aLIGO, NSF insisted LIGO place a

renewed emphasis on efficiency and optimization
of computationally expensive data analysis
pipelines.

• The LIGO Optimization Team is a joint effort
between LIGO Lab and LSC of between 2 to 5
FTEs over time. One FTE at Caltech currently open!

• pyCBC and GstLAL CBC search pipelines were the
two largest consumers of computing resources in
aLIGO.

12

Optimization Approach: 
“The Whole Patient”

• Scientific Prioritization and Scoping
• Estimation and Benchmarking of Computational Costs
• Optimization of Data Analysis Methods and Algorithms
• Optimization of Code Implementation and Libraries
• Compiler Optimizations
• Workflow Management Optimizations
• Development, Testing, and Simulation Process Optimizations
• LIGO-Virgo Computing Network Scheduling Optimizations
• Resource Supply Optimizations (make more cycles available)
• Workflow Portability Optimizations (expand usable resources)
• Hardware Procurement
• Pipeline Reviews including Computational Efficiency
• Documentation, Training, Collaboration and External Engagement

Neglect nothing, but focus on “bang for the buck” and where optimization effort can
be most effective. Avoid burdening scientists when the payback is small.

13 8

Ite
ra

te

Values are in Millions of aLIGO Service Units (MSU), where 1 SU = 1 Intel Xeon E5-2670 2.6Ghz CPU core-hour.

• Factor of ~8 reduction in estimated computational demand of
high-latency CBC search.

• Factor of ~6 reduction in estimated computational demand of
low-latency CBC search.

• Possible additional factors of 2-4 reduction under development
for offline CPU code, order of magnitude for offline GPU code.

Results
• Dramatic gains in efficiency and estimated computational

cost between May 2014 and May 2015:

14

Resource Optimization
(Supply-Side)

• Open Science Grid — outstanding initial results.
• OSG’s primary value to LIGO is in providing cyber-infrastructure (“plumbing”)

and NSF-funded staff to help enable LIGO to harness available non-LDG
resources (campus and regional clusters, PI clusters, HPC centers, XSEDE
resources, Virgo clusters, and even future cloud resources) that we’ve been
unable to effectively utilize in the past.

• There are also a non-trivial amount of idle CPUs to be harnessed
opportunistically at non-LIGO OSG institutions — that’s not our main target, but
it’s a nice side benefit.

• OSG is not a replacement for LDG clusters providing baseline supply and low-
latency computing — rather it’s a “universal adapter” to external resources, and
a means to provide elasticity to our computing resources, to meet peak (or
unexpected) demand.

• In O1, LIGO harnessed >14 MSUs from external resources via OSG, freeing
LDG clusters for other analyses. In total, 17% of O1 computing was delivered
by OSG, which is more than any individual LVC provider except AEI-Hannover.

15

Shared Resources
• Given demand estimates, LIGO/Virgo are unlikely (but not certain) to need

substantial shared computing resources through 2017-18 (O3) to meet our
science goals.

• However, modest shared resources will be of benefit for short-term demand
spikes, new searches, and hardware trade studies.

• We have engaged with XSEDE (US Supercomputer/HPC Network):
• So we’re prepared to scale quickly if we need to.
• So we can continue to leverage XSEDE HPC expertise (ECSS).
• So we’re ready for (and can help define) evolving HTC/HPC computing

models for future LIGO data analysis, post-O3.
• We have engaged with the Open Science Grid (OSG):

• To bridge the LIGO-Virgo Computing Network (LVCN) to shared computing
resources available to LIGO (including but not limited to XSEDE).

• To enable sharing of short-term LVCN surpluses.

16

LIGO Use of OSG
• Production offline CBC analysis utilized OSG in O1.

• The LIGO analyses running across >20 different
OSG resources.

• >20 million OSG CPU-hours for O1.

• About 1/3 of these OSG cycles were provided by
LIGO-connected partners (e.g., the Syracuse
campus grid), about 1/3 by XSEDE, and the
remainder were opportunistic cycles scavenged
from LIGO-unrelated clusters around the US.

• ~5TB of input data stored at the Holland Computing
Center (HCC) at the University of Nebraska-Lincoln.

• The total data volume distributed to jobs from
Nebraska >1PB.

• Data rates from Nebraska storage to worker nodes
~10Gbps sustained. (Recently demonstrated
>30Gbps!)

17

GW151226 CBC
offline running

GW150914 CBC
offline running

PyCBC GPU Search
• Offline search for binary black holes, binary neutron

stars, and neutron star—black hole binaries

• Searches across a pre-constructed bank of signal
parameters

• Compute coincident detection-statistic for
candidate events

• Measure noise background to determine candidate
event significance

PyCBC Search
• Pipeline cost dominated by filtering stage:

• Correlate and matched filter

• Chi-Squared signal-based veto

• Template Generation and Event Finding

• Pipeline described in S. A. Usman et al. arXiv:
1508.02357 (Classical and Quantum Gravity)

Search Algorithm

20

for binary parameters in pre-generated template
bank:  

generate waveform template(f;binary parameters)
 
for d in data:
 
correlate(template,data),
inverse FFT to get signal-to-noise ratio,
peak find and cluster
 
if (peak above threshold):
signal-based veto

Graphics Processing Units
• The FindChirp algorithm is can be efficiently implemented

on GPUs, if the the following practices are followed:

• Move data over PCIe bus to card once at start of
computation

• Minimize coalesced reads across the GPU’s memory
bus

• Take advantage of “black box” CUDA FFT library

• For LIGO data analysis, we can use single precision for
fast computation on cheap consumer cards

PyCBC on GPUs
• Use the same search engine replacing CPU code with

CUDA kernels

• Easy of maintenance and allows mixing of CPU and GPU
jobs in a workflow

for binary parameters in pre-generated
template bank:
generate waveform template(f;binary
parameters)
for d in data:
correlate(t,d), cuFFT, peak find,
cluster
if (peak above threshold):
signal-based veto

2015 GPU Trade Study
• Determine throughput based on different data types

(clean, glitchy) and compare to CPU throughput

• Focused on Maxwell architecture using consumer-
grade cards

Hardware Best Data Worst Data Cost Ave templates/$
E5-1660 v3 76,800 59,200 $1100 65
E3-1220 v3 29,600 25,900 $205 138

GTX 980 221,000 213,800 $550 360
GTX 750 Ti 120,700 116,600 $140 780

Current Template Throughput
• Test machine with 8 x GTX750 Ti Cards

• Using CUDA 7.5 and improvements to data handling in
PyCBC we can presently get 160,000 templates per GTX
750 Ti

• Compare to 2015 average of 110,000 templates per GTX
750 Ti

• The GTX750 Ti are very promising as a co-processing
technology for adding additional compute power to
racks, or for stand-alone GPU systems (Maxwell, no
additional power, cost $120 each)

Syracuse GPU Farm
• 14 x Magma EB16 PCIe

expansion chassis

• Each EB16 contains 16 x
GTX750Ti

• One or two EB16 per Dell 720
Host

• 4 x Intel E5-2670

• 2 x PCIe Expansion Cards

• Low power, low heat solution

• 314 GPU SP TFLOPs for $100k

25

GPU Benchmarking
• The three kernels that

dominate the inner loop are all
GPU memory to compute
memory bandwidth bound (on
the GPU itself)

• Template generation,
correlate, and event finding
are currently implemented as
separate kernels

• The cuFFT algorithm uses
several kernels for each radix
of the FFT and so triggers
memory transfers during the
FFT

26

Perhaps they are considering other applications besides the CBC search that would need
other methods? For CBC with PyCBC, the only methods as of now are those below.
Tentatively, we may also want matrix multiply and spline interpolation to do ROM generation.

Kernels
template generation: elementwise polynomial
complex conjugate + multiply: elementwise vector math
FFT
threshold + peak finding : custom reduction (max)
bruce chisq: custom reduction (sum)

CPU host usage :

 We have plugin architecture for compute kernels within our codebase, and so our initial
implementation has very little code divergence from our CPU codebase. Our initial
benchmarking has been aimed at maximizing GPU throughput performance and not
necessarily targeted to reduced host CPU usage which can spend significant time waiting for
triggers and spinwaiting. After more fully tuning and validating our GPU kernels for
throughput, there is straightforward reorganization of the toplevel control host code that can
reduce CPU usage, primarily by batch submitting kernels to the Device.

ToDo for Alex Nitz

Make pycbc_inspiral nvvprof plots

GPU Optimization Plans

• Reduce number of kernel calls
by using CUDA callbacks

• Prototype code has
developed to fuse correlate
and FFT into a single kernel
call

• Increased speed by almost
20%

• Needs further development in
collaboration with NVIDIA

27

Plans for O2
• 1500 GTX 750 GPU cards deployed on atlas.aei.uni-

hannover.de

• 244 GTX 750 Ti GPU cards deployed on hercules.syr.edu

• Together these are equivalent to ~ 45,000 Sandybridge cores

• Initial testing shows that GPU and CPU codes produce
consistent results for single triggers (up to numerical
precision)

• Re-run full O1 search on GPU cards and compare results, if
successful use GPUs for production searches later in O2.

http://atlas.aei.uni-hannover.de
http://hercules.syr.edu

Computing Challenges
• #1: Deploying / running optimized code to heterogenous computing environments. Interesting!

• Dedicated internal, dedicated external, shared/allocated, opportunistic, commercial cloud, etc.
• Many x86_64 CPU instruction sets, GPUs, MICs, KNL, etc.

• Properly-optimized executables can be up to factors-of-many faster than lowest-common-
denominator executables.

• What we don’t want to do: leave available resources un-utilized or run lowest-common-denominator
code on newer platforms.

• Approaches:
• Partition resources in advance, submit “right” code to each. (Eager planning.)
• Pre-deploy “right” code to each resource in advance.
• “Thin” dynamic/lazy payloads. (How late? What layer/s in the stack has the intelligence and

participate identifying/retrieving the right code?)
• “Fat” payloads, laziest possible determination.
• Other?

• For this problem, I’m not sure it matters whether the payload is an executable, a “bundle”, a
container, or a VM. Same basic problem.

• Has anyone solved it in a production scientific environment with many semi-autonomous users
running existing codes, and many semi-autonomous heterogenous computing providers?

Computing Challenges
• #2: Usage accounting on heterogenous computing environments. Boring!

• Dedicated internal, dedicated external, shared/allocated, opportunistic,
commercial cloud, etc.

• Many x86_64 CPU instruction sets, GPUs, MICs, KNL, etc.
• Different metrics: physical cores, generic core-hours, SUs, watts.

• You can account on the front end (submit-side) or the back end (execute-side) in
between (grid middleware), or somehow try to combine/harmonize more than one.

• What we don’t want to do:
• Fail to account to for resources used.
• Fail to normalize CPU core-hours by relative performance. (But what’s your

benchmark?)
• Double-count resources.

• Right now LIGO uses a combination of automated accounting and painstaking
human merge. (Guess which human ultimately has to make sure it’s right?)

• Can anyone help without invoking xkcd #927?

https://xkcd.com/927/

Computing Challenges
• #3: Deciding what & when to optimize and when not to. Interesting!
• This is tricky for a single developer and code. Very tricky for an entire collaboration and

deep stacks of pipelines, middleware, infrastructure, and human processes.
• Determining the crossover point between the cost of human effort and the potential

computation savings is key. As much an art as a science.
• We need to consider the (very rough) cost of labor, the (very rough) cost of a CPU hour,

the potential gains from an optimization target, the likelihood of success or failure, and
prioritize our efforts accordingly. Lots of human factors:

• How competent are the developers? Is the search chair supportive?
• How much of a pleasure (or pain in the neck) are they to work with? (Perverse

incentives!)
• How well does the optimization problem fit the skill sets of the people I can deploy?
• How embarrassing would leaving this unoptimized be if our funding agency reviewed

it?
• How important is the scientific activity that would benefit?
• How likely is the optimization to be long-lived (vs eclipsed by new technology or

science)? I.e., how many years of payback for the up-front human investment?

Computing Challenges
• #4 GPUs: Interesting!

• Accounting

• Scheduling

• 2 (?) hardware models: low-density vs high-density

• Very different economics & scheduling.

• Porting & maintaining codes

• Generalization to other parallel architectures (e.g., KNL)?

Computing Challenges

• I have more, but I’m out of time!

• Find me during the break and I can talk your ear
off.

• Thank you!

Astronomy	ESFRI	&	Research	Infrastructure	Cluster	
	ASTERICS	-	653477

ASTERICS-OBELICS	Workshop	2016	/	Rome	

Acknowledgement
• H2020-Astronomy ESFRI and Research

Infrastructure Cluster (Grant Agreement
number: 653477).

14/12/2016 34

Extra Slides

35

The LSC-Virgo White Paper on Gravitational Wave Searches and Astrophysics

Burst CBC CW SGWB
All-sky search for generic
GW transients, in low latency
for EM followup and deep,
offline for 4� detection con-
fidence

Detecting the coalescence of
neutron star and black hole
binaries and measuring their
parameters

All-sky search for isolated
neutron stars, both as a quick-
look on owned resources and
as a deep/broad search on
Einstein@Home

Directional search for
stochastic GW background

Parameter estimation for the
astrophysical interpretation
of detected burst events

Characterizing the astrophys-
ical distribution of compact
binaries

Targeted search for high
value, known pulsars

Isotropic search for stochas-
tic GW background

H
ig

he
st

pr
io

rit
y

Search for GW bursts trig-
gered by outstanding GRB
alerts

Responding to exceptional
CBC detections

Directed searches for most
promising isolated stars (Cas
A, Vela Jr etc.)

Constraints of a detected
background of astrophysical
origin with long transients

Searches triggered by out-
standing astrophysical events
(a galactic supernova, neu-
tron star transients, an excep-
tional high energy neutrino
alert)

Multi-messenger astronomy
with compact binaries

Directed searches for X-ray
binaries SCO-X1 and J1751-
305

Search for cosmic string
kinks and cusps

Searching for CBC-GRB co-
incidences
Testing General Relativity
with Compact Binaries

Searches triggered by high
energy neutrinos, extra-
galactic supernovae, and
GRB observations

All sky search for spinning
binary neutron star systems
(deep and low latency)

Targeted search for other
known pulsars

Long transient follow up of
CBC and burst candidates

Burst search for intermedi-
ate mass ratio and eccentric
black hole binary systems

Matched filtered search for
intermediate mass black hole
binary systems

Directed searches for other
isolated stars and X-ray bina-
riesH

ig
h

pr
io

rit
y

All-sky search for long bursts
of > 10 s duration
GRB-triggered search for
long-duration bursts and
plateaus

Exploring effects of detector
noise on parameter estima-
tion

All sky search for isolated
stars (alternative approaches)

Hypermassive neutron star
followup

Searching for sub-solar mass
CBC signals

All-sky search for binaries

A
dd

iti
on

al
pr

io
rit

y

Burst searches triggered
by radio transients and by
SGR/SGR-QPO

Developing searches for
CBC signals with generic
spins

Spotlight deep sky-patch
search ⇤⇤

Burst tests of alternative
gravity theories ⇤⇤

Search for Supernova post
birth signals ⇤⇤

Search for continuous wave
transients ⇤⇤

Table 2: Science priorities of the LIGO-Virgo collaboration, for the four astrophysics search groups: Bursts,
Compact Binary Coalescences (CBC), Continuous Waves (CW), and Stochastic Gravitational Wave Back-
ground (SGWB). The targets are grouped in three categories (highest priority, high priority, additional prior-
ity), based on their detection potential with Advanced Detectors. There is no additional ranking within each
category in this table. Critical for accomplishing these science priorities are the detector characterization,
calibration and injection activities described in this document.
⇤⇤ Future searches under development, not included in ongoing production computing requests.

3

Science Priorities
• Highest priority: searches

most likely to make detections
or yield significant
astrophysical results;

• High priority: promising
extensions of the highest
priority goals that explore
larger regions of parameter
space or can further the
science potential of LIGO and
Virgo;

• Additional priority: sources
with low detection probability
but high scientific payoff.

36

Table 2 in LIGO Document T1600115

Impact of Template Waveforms
• Two different waveform

families used in O1 depending
on target source:

• Post-Newtonian (PN)

• Effective One Body (EOB)

• Very different computationally

• PN is expressed as a
frequency-domain
polynomial

• EOB is numerically
integrated in the time
domain

37

Abbott et al. Phys. Rev. D 93, 122003 (2016)

GPU Template Implementation
• Currently no GPU implementation of the Effective One Body

waveforms used for binary black hole searches

• Grad student project underway to create a GPU version of
SEOBNRv2 Reduced Order Model waveform used in O1

• Core of algorithm is cubic b-spline interpolation, CUDA
implementations available

• Investigating low-cost waveform generation techniques for a
that can be template-family agnostic

• Important since template families can change in response to
science needs

