Low-power computing with ASTRI & CTA use cases

> Presented by **D. Bastieri** GPU Research Center Università di Padova & INAF

for the CTA Consortium

Main authors: A. Madonna, M. Urbani, G. Urso (Padova: Univ/INAF) L.A. Antonelli, M. Mastropietro, S. Lombardi & F. Lucarelli (Roma: INAF/OAR + ASDC)

ASTRI Camera

PDM pixels channels arrangement

The ASTRI SST-2M Prototype Camera

- Composed of 37 PDMs
- 2368 total pixels
 1984 connected pixels
- Camera hardware already integrates time slices
- DL0 data is made of HG ADC and LG ADC for each pixel

ASTRI Pixel-level algorithms easily express parallelism

Calibration

Essentially an *embarrassingly parallel*, Fused Multiply-Add operation (ASTRI camera outputs integrated ADC counts): PHE = ADC * coefficient + pedestal \$0 = \$0×\$1+\$2

• Cleaning

Two pass cleaning (two threshold comparisons) Well suited to parallelism

Reference Test Case

- 500MB (= 55049 events) of simulated DL0 "real data"
- \approx 110s of nominal acquisition rate (500Hz)
- ≈ 55s of projected peak rate (1000Hz)
- ≈ 80.5% of events survives pruning with default settings
- Compliant with format and size agreed with camera hardware team

Data Crunching: recipe from OAR

- 1) Evaluate pedestal offsets from 2k random events
- 2) Real data input (2GB = 50 s on MAGIC II @200Hz)
- 3) Pedestal subtraction
- 4) signal integration via sliding window (short[] \rightarrow int)
- 5) ADC counts (int) \rightarrow (× calibration) \rightarrow phe (float)
- 6) phe sorting/clustering/cleaning
- 7) evaluation of first 10 momenta
- 8) data output

D. Bastieri & S. Buson (UNIPD) L.A. Antonelli, D. Gasparrini, S. Lombardi, F. Lucarelli & N

D. Bastieri - Low Power Data Crunching - ETH Zürich, 30 June 2014

- 1) Pedestal/calibration feasible on ARM @5W.
- 2) data flow @1Gb/s, data processing @~2GB/min
- 3) Additional analysis:
 - a) spawn it to GPU's cores (add 20W or $<P> \sim 11W$)
 - b) filter through FPGA (?2W? <*P*> ~8W)
 - c) try out Jetson-TK1 (SoC)

D. Bastieri & D. Costantin 2016 ICIOT-5GMT GZ, China, November 28, 2016

NVIDIA Jetson TK1

- Heterogeneous System-on-Chip
- CPU: Quad-core ARM A15
- GPU: Kepler architecture 1 Multiprocessor
- RAM: 2GB (unified address memory)
- OS: Ubuntu 14.04 Linux for Tegra (L4T)
- CUDA 6.5
- I/O: SATA 3Gb/s HDD (no on-board eMMC)

Average power consumption: < 10 W

Low-level "Unified module"

- Performs calibration + cleaning + parameters computation in a single, tightly integrated program
- Direct processing from DL0 to DL1b (size-reduced telescope-wise data)
- 73x reduction in data size
- Minimizes disk transfer time

Low-power Unified module

- Processing from DL0 to DL1b (size-reduced telescope-wise data)
- All done in 12.5s: 4400 evt/s
 - > 4x peak acquisition rate
- 2.5x slower than server UM
 1.4x slower than separate
 modules
 30x less power
- Still plenty of time left for online analysis!

Not enough? New task for Jetson TK1!

Lombardi, Antonelli, Bastieri et al.

Feed Jetson with other tasks

astrireco

- Implements random forest application
- Loads pre-trained models (look up tables LUTs)
- Energy, direction and hadronness reconstruction

Execution time: 10s - 4 ARM core (using OpenMP)

Single telescope reconstruction pipeline

• Reduction + reconstruction = 22.5 s

• DL0 -> DL1c @ 2500 evt/s

 2.5x of peak acquisition rate on embedded hardware

NVIDIA Jetson TX1

- Latest generation embedded module from NVIDIA (announced Nov. 11th 2015)
- Credit-card size, touted of same
 ≈10W consumption (max 15W)
- CPU: Quad-core ARM A57
- GPU: 256-core Maxwell arch (2 SMM multiprocessors)
- 4GB RAM, Gigabit Ethernet
- Devkit with carrier board: \$600

Computational Cost

Selection (~5 minutes)
 Livetime cube (~2 minutes)
 Exposure map (~3 minutes)
 Fitting & SED (~3,5 hours)

from 3 days to 4 hours per source for ~5 years worth of data

New Pipeline · NVIDIA S2050 · 3 GB RAM

Performance comparison

Andrea Pigato · M'sD Physics · July 2013 · 24/28

NVIDIA

Maximum Likelihood Estimation on GPUs: Leveraging Dynamic Parallelism

- UDA: EARCH SEARCH A. 4.
- M. Mastropietro¹, D. Bastieri^{2,3}, A. Pigato², A. Madonna^{1,2},

S. Amerio³, D. Lucchesi³, L.A. Antonelli¹ & G. Lamanna⁴

- 1. Rome Observatory, INAF, Rome, Italy
- 2. CUDA Research Center, University of Padova, Italy
- . Dept. Physics and Astronomy, Univ. Padova and INFN, Padova, Italy
 - LAPP, Laboratoire d'Annecy-le-Vieux de physique des particules, Annecy, France

INFN

- Maximize the likelihood, given the data
- How to reduce CPU \leftrightarrow GPU data transfer?
- Levenberg-Marquardt vs. MINUIT see also de Naurois & Rolland arXiv:0907.2610
- Minimizer resident in GPU memory

Toy-MC Simulations

Filtering Events

Results and Performance

Filtering Events

Figure 10: Schematic representation of the filtering concept.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array

7th December 2016

э

Now we are able to define a time relationship between two events:

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array

7th December 2016

FCTA-R: Minimum Large Threshold

Toy-MC Simulations F

FCTA-N: Network Filter Algorithm

We are able to map the Λ -matrix in a graph in wich the nodes are the Entries and the edges are the λ_{ij} . This kind of graph is called complete Network.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array

7th December 2016

Filtering Events Results and Performance

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array

7th December 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array

7th December 2016

▲ロト ▲屈 ト ▲ 臣 ト ▲ 臣 - の へ ()・

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array

7th December 2016

E.

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array 7t

7th December 2016

E

 $\mathcal{O}\mathcal{Q}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array

7th December 2016

3

 $\mathcal{O}\mathcal{Q}(\mathcal{P})$

- ₹ 🖹 🕨

▲□▶ ▲□▶ ▲三▶

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array 7th I

7th December 2016

E

 $\mathcal{O}\mathcal{Q}$

≣►

.

(日)

Filtering Events

Results and Performance

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array 7th

7th December 2016

E

 $\mathcal{O}\mathcal{Q}$

< ∃ >

(日)

Filtering Events

Results and Performance

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array 7th

7th December 2016

E

 $\mathcal{O}\mathcal{Q}$

< ∃ >

< □ > < □ > < □ > < □ >

Toy-MC Simulations

Results and Performance

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array

7th December 2016

Ξ.

 $\mathcal{O}\mathcal{Q}$

≣►

.

▲□▶ ▲□▶ ▲三▶

Toy-MC Simulations

Filtering Events

Results and Performance

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array

7th December 2016

E

 $\mathcal{O}\mathcal{Q}$

≣►

▲□▶ ▲□▶ ▲三▶

Filtering Events

< □ > < □ >

Results and Performance

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani

Fast filtering of events for the Cherenkov Telescope Array 7th

7th December 2016

臣

590

≺∃→

∢ ≣ ▶

What's next?

Hadronness Energy estimation Incoming direction

What's next? DNN!

Machine Learning using Deep Neural Networks

Input

Result

Hadronness = 35% Energy = 565 GeV dir: RA=19^h58.4^m dec=35°12.1'

D. Bastieri & D. Costantin – 2016 ICIOT-5GMT – GZ, China, November 28, 2016

MaxEnt 1985 (6-mon proc)

MaxEnt 2014 (6-sec proc)

D. Bastieri & D. Costantin 2016 ICIOT-5GMT GZ, China, November 28, 2016

Conclusion

- ASTRI, CTA, and Gamma-Ray Astronomy at large, are an optimal testground for Low-Power Computing and High-Throughput Computing.
- Gamma-Ray Astronomy from ground needs a lot of computing power
 - Mostly in the realm of HTC (calibration, cleaning, image momenta...)
 - Calibrations may be done with ARM
 - Calibrations may be done with FPGA (lower Watts, but worth the additional burden?)
 - Additional analyses are feasible on NVIDIA Jetson T*1
 - Complete analysis chain working on NVIDIA Jetson TK1 (@2× max event rate)
 Event builder: with a special concern about *purity*
- Where to go next for Gamma-Ray Astronomy?
 - Algorithms select the optimal hardware architecture
 - Data crunching: integration with FPGA and DSP
 - MLA: still trying to find a *resident* minimizer
 - What about DNN? Comparisons with Classification Trees started

D. Bastieri – 1st ASTERICS-OBELICS Workshop – Rome, 14 December 2016