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ASTRI Camera
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The ASTRI SST-2M Prototype 
Camera

• Composed of 37 PDMs

• 2368 total pixels
1984 connected pixels

• Camera hardware already 
integrates time slices

• DL0 data is made of HG ADC 
and LG ADC for each pixel

A. Madonna – CTA Archive meeting - Rome, Jan. 19th,  2016



Algorithms parallelization
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• Calibration
Essentially an embarrassingly parallel, Fused Multiply-Add 

operation (ASTRI camera outputs integrated ADC counts):
PHE = ADC * coefficient + pedestal

$0 = $0×$1+$2

• Cleaning
Two pass cleaning (two threshold comparisons)

Well suited to parallelism

ASTRI Pixel-level algorithms easily express parallelism



• 500MB (= 55049 events) of simulated DL0 “real data”
• ≈ 110s of nominal acquisition rate (500Hz)
• ≈ 55s of projected peak rate (1000Hz)
• ≈ 80.5% of events survives pruning with default settings
• Compliant with format and size agreed with camera 

hardware team
12A. Madonna – CTA Archive meeting - Rome, Jan. 19th,  2016

Reference Test Case

Benchmarks



Xilinx Zynq-7000

1) Pedestal/calibration feasible on ARM @5W.
2) data flow @1Gb/s, data processing @~2GB/min
3) Additional analysis:

a) spawn it to GPU’s cores (add 20W or <P> ~11W)
b) filter through FPGA (?2W? <P> ~8W)
c) try out Jetson-TK1 (SoC)

D.	Bastieri	&	D.	Costantin
2016	ICIOT-5GMT
GZ,	China,	November	28,	2016																																											25



Introducing Jetson TK1
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NVIDIA Jetson TK1
• Heterogeneous System-on-Chip
• CPU: Quad-core ARM A15
• GPU: Kepler architecture - 1 Multiprocessor
• RAM: 2GB (unified address memory)
• OS: Ubuntu 14.04 Linux for Tegra (L4T)
• CUDA 6.5
• I/O: SATA 3Gb/s HDD (no on-board eMMC)

Average power consumption: < 10 W



Embedded analysis
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Low-level “Unified module”

• Performs calibration + cleaning + parameters 
computation in a single, tightly integrated program

• Direct processing from DL0 to DL1b (size-reduced 
telescope-wise data)

• 73x reduction in data size

• Minimizes disk transfer time
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Low-power Unified module

Benchmarks: Jetson TK1

• Processing from DL0 to DL1b 
(size-reduced telescope-wise 
data)

• All done in 12.5s:
4400 evt/s
> 4x peak acquisition rate

• 2.5x slower than server UM
1.4x slower than separate 
modules
30x less power

• Still plenty of time left for 
online analysis!Average of 5 runs



Not enough? New task for Jetson TK1!
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Feed Jetson with other tasks

astrireco

• Implements random forest 
application

• Loads pre-trained models
(look up tables LUTs)

• Energy, direction and 
hadronness reconstruction

Execution time: 10s - 4 ARM core 
(using OpenMP)

A. Madonna – CTA Archive meeting - Rome, Jan. 19th,  2016

Lombardi, Antonelli, Bastieri et al.



Benchmarks: Jetson TK1

• Reduction + reconstruction = 22.5 s

• DL0 -> DL1c @ 2500 evt/s 

• 2.5x of peak acquisition rate on embedded 
hardware

15A. Madonna – CTA Archive meeting - Rome, Jan. 19th,  2016

Single telescope reconstruction pipeline



The future
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NVIDIA Jetson TX1
• Latest generation embedded 

module from NVIDIA
(announced Nov. 11th 2015)

• Credit-card size, touted of same 
≈10W consumption (max 15W)

• CPU: Quad-core ARM A57
• GPU: 256-core Maxwell arch

(2 SMM multiprocessors)
• 4GB RAM, Gigabit Ethernet

• Devkit with carrier board: $600



Computational Cost

from 3 days to 4 hours per source for ~5 years worth of data
New Pipeline · NVIDIA S2050 · 3 GB RAM

Andrea Pigato · M’sD Physics · July 2013 · 23/28



Performance comparison

Andrea Pigato · M’sD Physics · July 2013 · 24/28



MLA
&LMA

• Maximize the likelihood, given the data
• How to reduce CPU↔GPU data transfer?
• Levenberg-Marquardt vs. MINUIT

see also de Naurois & Rolland
arXiv:0907.2610

• Minimizer resident in GPU memory

D. Bastieri & D. Costantin – 2016 ICIOT-5GMT – GZ, China, November 28, 2016 18



VHE Gamma Ray Physics CTA project Toy-MC Simulations Filtering Events Results and Performance

Filtering Events

Figure 10: Schematic representation of the filtering concept.

Michele Urbani Fast filtering of events for the Cherenkov Telescope Array 7th December 2016



VHE Gamma Ray Physics CTA project Toy-MC Simulations Filtering Events Results and Performance

Events

Michele Urbani Fast filtering of events for the Cherenkov Telescope Array 7th December 2016



VHE Gamma Ray Physics CTA project Toy-MC Simulations Filtering Events Results and Performance

FCTA-R: Minimum Large Threshold

Michele Urbani Fast filtering of events for the Cherenkov Telescope Array 7th December 2016



VHE Gamma Ray Physics CTA project Toy-MC Simulations Filtering Events Results and Performance

FCTA-N: Network Filter Algorithm

We are able to map the ⇤-matrix in a graph in wich the nodes are the Entries
and the edges are the �ij . This kind of graph is called complete Network.

Michele Urbani Fast filtering of events for the Cherenkov Telescope Array 7th December 2016



VHE Gamma Ray Physics CTA project Toy-MC Simulations Filtering Events Results and Performance

Clustering Algorithm

Figure 12: Images of a clustering process obtained with FCTA-N.

Michele Urbani Fast filtering of events for the Cherenkov Telescope Array 7th December 2016
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Clustering Algorithm
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Clustering Algorithm
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Michele Urbani Fast filtering of events for the Cherenkov Telescope Array 7th December 2016



What’s	next?
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Hadronness
Energy	estimation
Incoming	direction

D. Bastieri & D. Costantin – 2016 ICIOT-5GMT – GZ, China, November 28, 2016



What’s	next?	DNN!
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• 500MB (= 55049 events) of simulated DL0 “real data”
• ≈ 110s of nominal acquisition rate (500Hz)
• ≈ 55s of projected peak rate (1000Hz)
• ≈ 80.5% of events survives pruning with default settings
• Compliant with format and size agreed with camera 

hardware team
12A. Madonna – CTA Archive meeting - Rome, Jan. 19th,  2016

Reference Test Case

Benchmarks

Hadronness =	35%
Energy	=	565	GeV
dir:	RA=19h58.4m

dec=35°12.1’
D. Bastieri & D. Costantin – 2016 ICIOT-5GMT – GZ, China, November 28, 2016



MaxEnt	1985

(6-mon	proc)

MaxEnt

2014

(6-sec	proc)

D.	Bastieri	&	D.	Costantin

2016	ICIOT-5GMT

GZ,	China,	November	28,	2016
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• ASTRI,	CTA,	and	Gamma-Ray	Astronomy	at	large,	are	an	optimal	test-
ground	for	Low-Power	Computing	and	High-Throughput	Computing.
• Gamma-Ray	Astronomy	from	ground	needs	a	lot	of	computing	power

– Mostly	in	the	realm	of	HTC	(calibration,	cleaning,	image	momenta…)
– Calibrations	may	be	done	with	ARM
– Calibrations	may	be	done	with	FPGA

(lower	Watts,	but	worth	the	additional	burden?)
– Additional	analyses	are	feasible	on	NVIDIA	Jetson	T*1
– Complete	analysis	chain	working	on	NVIDIA	Jetson	TK1	(@2×max	event	rate)
– Event	builder:	with	a	special	concern	about	purity

• Where	to	go	next	for	Gamma-Ray	Astronomy?
– Algorithms	select the	optimal	hardware	architecture
– Data	crunching:	integration	with	FPGA	and	DSP
– MLA:	still	trying	to	find	a	residentminimizer
– What	about	DNN?	Comparisons	with	Classification	Trees	started

Conclusion


