

1st ASTERICS-OBELICS Workshop 12-14 December 2016, Rome, Italy.

A globally distributed data management solution WLCG – the LHC's offline computing platform

Oliver Keeble CERN Storage Group

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

Results today only possible due to extraordinary performance of accelerators – experiments – Grid computing

Run/Event: 194108 / 56422400

Observation of a new particle consistent with a Higgs Boson (but which one...?)

Historic Milestone but only the beginning

Global Implications for the future

13/12/2016

Disk by computer centre Total ~300 PB

CÈRN

More than half the CPU goes on simulation.

Most of the rest is reconstruction.

The remainder is analysis.

From yesterday...

13/12/2016

Different probes/methods/specifications

We are here!

Projects	Data Processing	Main requirements/challenges	
EVENT-BASED (ץ-rays, CR, v) <u>CTA. KM3Net</u>	Evt-builder, calib. and reconstruction; reduction, real-time science.	Raw big-data. Data formats. Algorithms. On-site operation and reduction. Cooperative science tools. Observatory (A&A). Multi-A. []	
IMAGE-BASED (far-IR, VIS) <u>EUCLID. LSST</u>	Surveys/deep observation; combining photometer and spectrograph info.; Catalogue of objects.	Big-data products: data base challenges. Graphical processing, Algorithms. Images format. Catalogue preservation and query. A&A. []	
SIGNAL-BASED (Radio, GW) <u>SKA, LIGO-Virao</u>	Noise cleaning; time- series, mathematical processing (FT) converting signal in images.	Algorithms. New computing architectures and data centres. Combination of HPC and HTC. Fast soft reduction. Data mining and preservation. A&A []	
1# OBELICS Workshop, Rome 12/12/2016 G. Lamanna			

What advantages do we have?

- Event independence
- "Read-only" data
- File-based data
- Scientific Linux
- Coarse grained (VO) authorisation
- X509 acceptance
- Large proportion of CPU intensive work

WLCG Stack

Applications	Analysis, reco	ROOT
Community Services	Workflow, Data Management	Atlas, Alice, CMS, LHCb
Infrastructure Services	Transfer, Identity, Mon	FTS, X509, monit
Site services	Storage, Compute	DPM, CREAM
Site, Cloud, HPC,	Storage, CPU, Network	Ceph, Torque

WLCG Stack

Applications	Analysis, reco	ROOT
Community Services	Workflow, Data Management	Atlas, Alice, CMS, LHCb
Infrastructure Services	Transfer, Identity, Mon	FTS, X509, monit
Site services	Storage, Compute	DPM, CREAM
Site, Cloud, HPC,	Storage, CPU, Network	Ceph, Torque

Not (only) a grid

- The WLCG infrastructure comprises
 - Grid pledged
 - Cloud rented
 - HPC allocated
 - Volunteer donated
 - Concepts
 - Opportunistic resources
 - Pre-emptibility

Volunteer

Maximum: 112,630 , Minimum: 0.00 , Average: 63,358 , Current: 62,935

13/12/2016

HPC – backfill on Titan

ATLAS production running on Titan in 2016

Pure opportunistic backfill mode, no project allocation, ATLAS Geant4 simulations

Sergey Panitkin

CERN

2016 data volumes

Transfered Data Amount per Virtual Organization for WRITE Requests

LHC data – Continue to break records: 10.7 PB recorded in July CERN archive ~160 PB

June-Aug 2016 >500 TB / day (Run 1 peak for HI was 220 TB)

~160 PB on tape at CERN 500 M files

13/12/2016

Data - transfer

Most LHC transfers are managed by the File Transfer Service (FTS)

Try it at https://webfts.cern.ch

Asterics-Obelics Roma 2016

Data – storage systems

_EOS

Systems are evolving towards standards. All now offer HTTPS access.

13/12/2016

Global Data Federation

In use by

- Atlas (FAX)
- CMS (AAA)
- Main uses
 - Failover
 - Overflow
 - Diskless sites

Data – what is it?

ROOT files

Open https://server/data.root While (next event) { do stuff;

- Typically a few GB each
- Column-like structured storage
- Lots of I/O optimisation
 - WAN access

Software distribution

- CVMFS
- r/o cached fs
- >350M files

[lxplus109] ls /cvmfsalice.cern.chclicdp.cern.chalice-ocdb.cern.chcms.cern.chams.cern.chcms-ib.cern.chatlas.cern.chcvmfs-config.coatlas-condb.cern.chgeant4.cern.chatlas-nightlies.cern.chgrid.cern.ch

clicdp.cern.ch ilc.desy.de cms.cern.ch lhcb.cern.ch cms-ib.cern.ch na61.cern.ch cvmfs-config.cern.ch sft.cern.ch geant4.cern.ch

The road ahead

13/12/2016

High-Lumi LHC resource estimates

Data:

- X10 from 2016
 - Raw 2016: 50 PB → 2027: 600 PB
 - Derived (1 copy): 2016: 80 PB → 2027: 900 PB

Technology at ~20%/year will bring x6-10 in 10-11 years

HL-LHC Solutions

Summary

- WLCG is the production offline computing platform for the 4 LHC experiments
- Can process multiple PB / month
- In 2025 we will have a new accelerator with new experiments
 - Order of magnitude more load at fixed cost
 - Technology sharing = sustainability & reduced costs

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

Acknowledgement

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

Supplementary Slides

Data Management Directions

- Reduce cost/volume
 - cost of storage management
 - integrating standard (non HEP) solutions e.g. ceph
 - protocol zoo, SRM-less operation
 - T2 storage as cache
 - multi-site storage
 - regional federations
 - cloud storage
 - system manageability
 - storage overheads
 - redundancy
 - replication, erasure, RAID levels etc
 - reduce system reliability requirements?
 - reduce cost/impact of data loss
 - component technology
 - shingled disks
 - consumer/enterprise disks

- Reduce volume used
 - reduced number of global replicas
 - remote access
 - latency hiding
 - applications, overcommitting
 - global federations
 - CPU-only resources (inc cloud)
 - data formats and lifecycle, intermediate products
 - resource reporting
 - monitoring usage
 - eliminating dark data
 - data "enrichment"
 - popularity
 - caching, avoiding unused data
 - promoting locality in workflows
 - trading disk for...
 - tape
 - data parking
 - CPU
 - maintain metadata enabling regeneration of data on demand

LHC: "outstanding performance"

