
S15 Large Scale Tests
Data Set
Hardware
Timing summary

Short queries
Full table scans, single query at a time
Full table joins, single query at a time
Concurrent scans
Heavy load test 50 LV + 5 HV
Heavy load test 100 LV + 10 HV

Notes and Observations
Sample Queries
Raw output from selected individual queries

Counts
Short-running queries
Full table scans
Joins
Near neighbor
Shared scans

This page captures information about the large scale tests we ran on the IN2P3 cluster during Summer 2015.

For comparisons, here is a link to the previous large scale test that we run: https://dev.lsstcorp.org/trac/wiki/db/Qserv/in2p3_300

Data Set

table row count .MYD size [TB] .MYI size [TB]

Object 1,889,695,615 2.45 0.06

Source 34,886,017,763 17.13 2.05

ForcedSource 172,081,115,270` 5.85 4.61

Total MySQL data dir size: 33.2 TB
So for Object and Source we are at the ~10% of DR1 level. We have more Forced Sources than 10% of DR1.

Hardware
50 nodes, DELL PowerEdge R620
2 x Processors Intel Xeon E5-2603v2 @ 1.80 Ghz 4 core
10 Mo cache, 6.4 GT/s, 80W
Memory 16 GB DDR-3 @ 1600MHz (2x8GB)
2 x hard drive 250GB SATA 7200 Rpm 2,5" - hotplug => OS
8 x hard drive 1 TB Nearline SAS 6 Gbps 7200 Rpm 2,5"
hotplug => DATA
1 x card RAID H710p 1 GB nvramwith
1 x card1 GbE 4 ports Broadcom® 5720 Base-T
1 x card iDRAC 7 Enterprise

Timing summary

Data on 24 nodes (for comparison, DR1 is expected to be on 92 nodes).

Short queries

single object selection by id: 0.09 sec
small spatial area selection from Object: 0.33 sec

Full table scans, single query at a time

https://dev.lsstcorp.org/trac/wiki/db/Qserv/in2p3_300

Object ~4 min
Source ~18 min
ForcedSource ~15 min

Full table joins, single query at a time

Object x Source: ~23 min
Object x ForcedSource: ~ 21 min

Concurrent scans

2 Object scans ~ 8 min, (this shows that our shared scan code has issues, scheduled to be solved in W16)5 Object scans ~16-20 min

Heavy load test 50 LV + 5 HV

50 low volume and 5 high volume queries (3 scans for Object, 1 scan for Source, 1 Object-Source joins), all running simultaneously with
appropriate sleep in between queries to enforce the mix we were aiming
During 24 hours :we completed

431,597 low volume queries (consistent with the baseline: ~10 sec per query, or 432,000 queries in 24h)
73 Object scans (consistent with baseline: ~1h per query, or 72 in 24h)
3 Source scans (consistent with baseline: ~8h per query, or 3 in 24h)
3 Object-Source joins (consistent with the baseline ~8h per query, or 3 in 24h)
overall size of results was 6.5 GB (~16 KB per query on average)

Average times:
low volume queries: 0.91 sec (per baseline, should be under 10 sec)
Object scan: 15 min (per baseline, should be under 1 hour)
Source scan: 56 min (per baseline, should be under 8 hours)
Object-Source join 57 min (per baseline, should be under 8 hours)

Observations:
io bound during the time when scans happen at the same time. Disks 85-90% busy (~750 MB/sec seen)
the aggregate load on the cluster: https://confluence.lsstcorp.org/download/attachments/35815659/in2p3_5HV50LV.png?api=v2

Heavy load test 100 LV + 10 HV

100 low volume and 10 high volume queries (), all running simultaneously6 scans for Object, 2 scan for Source, 2 Object-Source joins
with appropriate sleep in between queries to enforce the mix we were aiming
During 24 hours we completed:

861,608 low volume queries
144 Object scans
6 Source scans
8 Object-Source joins

Average times:
low volume queries: 5.1 sec
Object scan: 22 min
Source scan: 1 h 33 min
Object-Source join 1 h 22 min

Observations:
the aggregate load on the cluster: https://confluence.lsstcorp.org/download/attachments/35815659/in2p3_10HV100LV.png?api=
v2

Notes: during the last part of that test we were reloading data on the node ccqserv101, which was impacted how the average load on the
cluster looked like

Notes and Observations

Concurrently greatly improved. This was the very first time we ever successfully ran more than 3-4 simultaneous queries (we run up to
110).
Robustness greatly improved. This was the very first time we ran continuously without any failure for 24 hours (it could have ran for
longer, we just limited it to 24h)
Latency reduced 100x. In previous tests average time to complete low-volume query was above 1 sec. Some of the latest improvements
involve reducing latency, in particular the overhead of query dispatch and sending back result data. The improvements are clearly visible,
we were able to demonstrate 90 milisec response time for individual low-volume queries - 100x better than before.
Work to do:

When we run 5 full scan queries, some low volume queries get stuck, and wait to be scheduled for a long time (minutes), this

https://confluence.lsstcorp.org/download/attachments/35815659/in2p3_5HV50LV.png?api=v2
https://confluence.lsstcorp.org/download/attachments/35815659/in2p3_10HV100LV.png?api=v2
https://confluence.lsstcorp.org/download/attachments/35815659/in2p3_10HV100LV.png?api=v2

needs to be optimized. But overall things balance out because full scan queries end before planned time and there is quite time,
when low volume queries can catch up.
Single-table scared scans are not working well. This will be fixed in W16
Multi-node shared scans are not working. We did not implement it yet. The plan is to implement this in W16
The tests revealed problem with handling large results on the master node: when a query involves multi-GB results, our master
node will currently use excessive amount of memory and CPU. (Some of the tests we ran produced result sets up to 46 GB over

the period of 30 hours). The uncovered issue will be addressed in FY16 () - DM-3495 X16 Large Results DONE

Sample Queries

The actual program that we used to drive the testing can be found at: runQueries.py

Trivial query that retrieves one row, using index

SELECT * FROM Object WHERE objectId = <objId>

Counts

SELECT COUNT(*) FROM Object

SELECT COUNT(*) FROM Source

SELECT COUNT(*) FROM ForcedSource

Spatially restricted query, small area of sky, should return small number of rows (say <100)

SELECT COUNT(*)
FROM Object
WHERE ra_PS BETWEEN 1 AND 2
AND decl_PS BETWEEN 3 AND 4
{quote}

Full table scan, use some column in WHERE that is not indexes, make sure the number of results returned is sane (eg thousands, not millions)

SELECT objectId, ra_PS, decl_PS, <few other columns>
FROM Object
WHERE fluxToAbMag(iFlux_PS) - fluxToAbMag(zFlux_PS) > 4

Aggregation

SELECT COUNT(*) AS n,
AVG(ra_PS),
AVG(decl_PS), chunkId
FROM Object
GROUP BY chunkId

Near neighbor

SELECT COUNT(*)
FROM Object o1, Object o2
WHERE qserv_areaspec_box(-5,-5,5,-5)
AND qserv_angSep(o1.ra_PS, o1.decl_PS, o2.ra_PS, o2.decl_PS) < 0.1

Joins

SELECT o.objectId, s.sourceId, ra_PS, decl_PS, <few other columns>
FROM Object
JOIN SOURCE USING (objectId)
WHERE fluxToAbMag(iFlux_PS) - fluxToAbMag(zFlux_PS) > 4
AND <some restriction from source table>

Raw output from selected individual queries

Numbers for 24h scaling tests not shown due to size of the output

Counts

https://jira.lsstcorp.org/browse/DM-3495
https://github.com/lsst-dm/db_tests_summer15/blob/tickets/DM-3364/DM-3364/runQueries.py
https://github.com/lsst-dm/db_tests_summer15/blob/tickets/DM-3364/DM-3364/runQueries.py

select count(*) from Object;
+----------------+
| SUM(QS1_COUNT) |
+----------------+
| 1889695615 |
+----------------+
1 row in set (47.75 sec)

select count(*) from Source;
+----------------+
| SUM(QS1_COUNT) |
+----------------+
| 34886017763 |
+----------------+
1 row in set (40.99 sec)

select count(*) from ForcedSource;
+----------------+
| SUM(QS1_COUNT) |
+----------------+
| 172081115270 |
+----------------+
1 row in set (48.33 sec)

Short-running queries

SELECT ra, decl FROM Object WHERE deepSourceId = 3306154155315676;
+------------------+-------------------+
| ra | decl |
+------------------+-------------------+
| 346.444574155259 | -20.0756000206646 |
+------------------+-------------------+
1 row in set (0.09 sec)

SELECT ra, decl FROM Object WHERE qserv_areaspec_box(0.95, 19.171, 1.0, 19.175);
+-------------------+------------------+
| ra | decl |
+-------------------+------------------+
0.952155934104298	19.1739644910299
0.951022182881938	19.1744018550878
0.979879729932035	19.1721286203352
0.978531748948322	19.173622354719
0.975277403624571	19.1717082593989
0.965659553702501	19.1732402376328
0.960765770111898	19.1728325244272
0.956040810381224	19.1748876675009
0.954389385192787	19.1715837046997
0.970953770462485	19.1732960324755
0.988995842261423	19.172924537295
0.98748403175534	19.1744384618428
0.990599073289862	19.1748218268107
0.989373097950412	19.1741759125297
0.995062781391914	19.1726058129962
0.993584927322364	19.174694023095
0.994098536926311	19.171425377618
0.997942570312296	19.1749796823199
0.987602654004053	19.1743333663937
0.988982091888198	19.1729311723649
+-------------------+------------------+
20 rows in set (0.33 sec)

Full table scans

select count(*) from Object where y_instFlux > 5;
+----------------+
| SUM(QS1_COUNT) |
+----------------+
| 0 |
+----------------+
1 row in set (4 min 7.61 sec)

select min(ra), max(ra), min(decl), max(decl) from Object;
+--------------+------------------+-------------------+------------------+
| MIN(QS1_MIN) | MAX(QS2_MAX) | MIN(QS3_MIN) | MAX(QS4_MAX) |
+--------------+------------------+-------------------+------------------+
| 0 | 359.999999921199 | -87.8823524031432 | 45.5294117096401 |
+--------------+------------------+-------------------+------------------+
1 row in set (4 min 4.24 sec)

select count(*) from Source where flux_sinc between 1 and 2;
+----------------+
| SUM(QS1_COUNT) |
+----------------+
| 3539300 |
+----------------+
1 row in set (18 min 8.09 sec)

select count(*) from Source where flux_sinc between 2 and 3;
+----------------+
| SUM(QS1_COUNT) |
+----------------+
| 3589961 |
+----------------+
1 row in set (17 min 57.38 sec)

select count(*) from ForcedSource where psfFlux between 0.1 and 0.2;
+----------------+
| SUM(QS1_COUNT) |
+----------------+
| 67769638 |
+----------------+
1 row in set (14 min 58.61 sec)

Joins

select count(*) from Object o, Source s WHERE o.deepSourceId=s.objectId AND s.flux_sinc BETWEEN 0.13 AND
0.14;
+----------------+
| SUM(QS1_COUNT) |
+----------------+
| 35179 |
+----------------+
1 row in set (23 min 1.44 sec)

select count(*) FROM Object o, ForcedSource f WHERE o.deepSourceId=f.deepSourceId AND f.psfFlux BETWEEN
0.13 AND 0.14;
+----------------+
| SUM(QS1_COUNT) |
+----------------+
| 6749369 |
+----------------+
1 row in set (21 min 31.38 sec)

Near neighbor

select count(*)
from Object o1, Object o2
where qserv_areaspec_box(90.299197, -66.468216, 98.762526, -56.412851) and scisql_angSep(o1.ra, o1.decl,
o2.ra, o2.decl) < 0.015;

+----------------+

| SUM(QS1_COUNT) |

+----------------+

| 96795152 |

+----------------+

1 row in set (11 min 16.02 sec)

Shared scans

Two scans on Object, both finished in ~8.5 min or so. Startup was staggered.

QTYPE_FTSObj: 505.703582048 SELECT COUNT(*) FROM Object WHERE y_instFlux > 5
QTYPE_FTSObj: 505.837508917 SELECT MIN(ra), MAX(ra) FROM Object WHERE decl > 3

Five scans on Object finished in 16-20 min. Startup was staggered.

QTYPE_FTSObj: 990.450098038 SELECT MIN(ra), MAX(ra) FROM Object WHERE decl > 3
QTYPE_FTSObj: 1168.69941115 SELECT MIN(ra), MAX(ra) FROM Object WHERE decl > 3
QTYPE_FTSObj: 1180.72830892 SELECT COUNT(*) FROM Object WHERE y_instFlux > u_instFlux
QTYPE_FTSObj: 1178.19018197 SELECT COUNT(*) FROM Object WHERE y_instFlux > 5
QTYPE_FTSObj: 1173.29835892 SELECT MIN(ra), MAX(ra) FROM Object WHERE z_apFlux BETWEEN 1 and 2

Five scans on Object, without staggering, not much difference:

QTYPE_FTSObj: 738.438729763 SELECT COUNT(*) FROM Object WHERE y_instFlux > 5
QTYPE_FTSObj: 1162.67162609 left 2437.32837391 SELECT MIN(ra), MAX(ra) FROM Object WHERE decl > 3
QTYPE_FTSObj: 1169.67710209 left 2430.32289791 SELECT COUNT(*) FROM Object WHERE y_instFlux > 5
QTYPE_FTSObj: 1171.61784506 left 2428.38215494 SELECT COUNT(*) FROM Object WHERE y_instFlux > 5
QTYPE_FTSObj: 1171.95623493 left 2428.04376507 SELECT COUNT(*) AS n, AVG(ra), AVG(decl), chunkId FROM Object GROUP BY chunkId

Five scans: four on Object, one on Source: ~1h10 min per scan

QTYPE_FTSObj: 4237.70917988 SELECT MIN(ra), MAX(ra) FROM Object WHERE decl > 3
QTYPE_FTSObj: 4262.98238802 SELECT COUNT(*) FROM Object WHERE y_instFlux > 5
QTYPE_FTSObj: 4263.39259911SELECT COUNT(*) FROM Object WHERE y_instFlux > 5
QTYPE_FTSObj: 4263.39338088 SELECT COUNT(*) FROM Object WHERE y_instFlux > 5
QTYPE_FTSSrc: 4264.03135395 SELECT COUNT(*) FROM Source WHERE flux_sinc BETWEEN 1 AND 2

	S15 Large Scale Tests

