# KM3NeT Computing and Data Management

Kay Graf, ECAP, University of Erlangen 1<sup>st</sup> ASTERICS-OBELICS Workshop, 12-14 December 2016, Rome, Italy.





H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).









### **KM3NeT and ASTERICS**



Astronomy ESFRI & Research Infrastructure Cluster ASTERICS - 653477



#### The KM3NeT groups

- CNRS/CPPM
- INFN/Frascati, LNS, Salerno
- FAU/ECAP
- FOM/Nikhef

are strongly involved in the ASTERICS work packages

- OBELICS (WP3)
- DADI (WP4)
- CLEOPATRA (WP5)

So what is KM3NeT and what are the questions related to this session?



## The KM3NeT Collaboration

- about 240 people
- more than 45 institutes or universities
- 13 different countries
- to build, install and operate the first phase of the KM3NeT Research Infrastructure in the Mediterranean Sea which houses a network of neutrino detectors and ports for Earth and Sea science research





## KM3NeT

KM3NeT is a research infrastructure in the Mediterranean Sea hosting neutrino detectors

- KM3NeT/ARCA (Astroparticle Research with Cosmics in the Abyss)
  - discovery and observation of high energy (TeV–PeV) neutrino sources
    - $\Rightarrow$  a telescope offshore Capo Passero (Sicily-Italy) is in construction at a depth of 3500m
- KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss)
  - neutrino oscillations physics / neutrino mass hierarchy
    - $\Rightarrow$  a detector offshore Toulon (France) able to detect neutrinos of a few to tens of GeV is in construction at a depth of 2500m

ARCA and ORCA share the same detector technology

• Details on the ARCA and ORCA physics performances and on the technical design in the recently published Letter of Intent:

#### **OPEN ACCESS**

**IOP** Publishing

Journal of Physics G: Nuclear and Particle Physics



## The KM3NeT/ARCA Design 3D array of optical sensors sensitive element: **Digital Optical** Module (DOM) Cherenkov cone artist's view

vertical structure: Detection Unit (DU)

- detector made of 2 building blocks (BB) of 115 DUs, each.
  90 m horizontal interspacing ⇒ 0.5 km<sup>3</sup>/block
- DU: vertical slender string equipped with 18 DOMS, 36 m vertical spacing
- power and data distributed by a single backbone cable from shore; seafloor network of cables and junction boxes connected
- all data sent to shore and processed there in a dedicated computing farm



## The Phased Implementation of KM3NeT

| Phase | Building<br>Blocks       |                  | Number of<br>DUs           |                    | Physics Goal                                                                         |                                                         | Status                                                                   |
|-------|--------------------------|------------------|----------------------------|--------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|
|       | ARCA                     | ORCA             | ARCA                       | ORCA               | ARCA                                                                                 | ORCA                                                    |                                                                          |
| 1     | 0.2                      | 0.06             | 23                         | 7                  | proof of feasil<br>science results;<br>with ANTA                                     | bility and first<br>joined analysis<br>RES data         | fully funded; first<br>2 DUs installed<br>and working at<br>Capo Passero |
| 2.0   | 2                        | 1                | 230                        | 115                | neutrino<br>astronomy;<br>study of the<br>neutrino signal<br>reported by<br>IceCube. | <b>precursor</b><br>neutrino<br>oscillations<br>physics | EU preparatory<br>proposal<br>"KM3NeT 2.0"<br>under finalisation         |
| 3     | <b>6</b><br>Ist ASTERICS | -<br>G-OBELICS W | <b>690</b><br>/orkshop - R | -<br>ome - Dec. 20 | neutrino<br>astronomy<br>including<br>Galactic                                       |                                                         | not yet funded                                                           |



## Timeline

phased implementation of the projects allows for:

- development and test of algorithms for all processing steps on a relatively small data set;
- establish processing chains and workflow with relatively low needs;
- include common e-Services and follow the development in the field (though sometimes hard due to limited HR).
- $\Rightarrow$  preparation of procedures and workflow in due time
- $\Rightarrow$  in perfect timing with the ASTERICS project.



## **Workflow & Preservation Considerations and Practises**

- follow common practise, where possible
  - follow eCommons (as e.g. set by ASTERICS)
- use standard data formats
  - build (and enhance) existing eCommons (e.g. from precursor ANTARES) but employ new developments where advantageous
- use central services and providers (currently mostly CC-IN2P3, CNAF)
  - in addition contacts with other service providers
  - add custom designed interfaces where necessary
- quality first
  - follow internal software quality plan
  - use centralized services of standard development and deployment tools
- data storage
  - central, persistent storage of all data, software
  - essential: reproducibility and usability of all scientific results over full time of experiment (+10 years after shut-down)



#### **Computing Model and Data Management: General Scheme**

Tier-like structure, mixed access: direct (batch) + Grid
 + ... Cloud in the future (?)

| Tier   | <b>Computing Facility</b> | Processing steps                                            | Access                                             |
|--------|---------------------------|-------------------------------------------------------------|----------------------------------------------------|
| Tier-0 | at detector site          | triggering, online-calibration, quasi-online reconstruction | direct access,<br>direct processing                |
| Tier-1 | computing centres         | calibration and reconstruction, simulation                  | direct access, batch processing and/or grid access |
| Tier-2 | local computing clusters  | simulation and analysis                                     | varying                                            |
|        | -                         |                                                             |                                                    |

• Resource need estimates:

| Phase KM3N         | Data storage | per year (TB) | core hours per y | ear (HS06.h) |
|--------------------|--------------|---------------|------------------|--------------|
| Phase-1            | Prelimin     | 290           |                  | 60 M         |
| one Building Block | - minary     | 995           | ;                | 353 M        |

• minimum processing delay (raw  $\rightarrow$  high-level data) envisioned







## **Special Points in the KM3NeT Data Workflow**

- "all-data-to-shore" principle: minimum trigger (PMT signal threshold) in the detector, coincidence building and triggering all on central computing farm
  - flexible, scalable environment
  - addition of triggers simple (add new servers)
    → e.g. for external alerts
- data processing chain from primary to high-level data based on:
  - provided by specialized service group
  - two processing and analysis chains supported (for consistency checks)
  - common data formats on all steps (root, HDF5, xml, ascii)

ASTERICS recommendation



## **Special Points in the KM3NeT Data Workflow**

- central ORACLE database hosted by CC-IN2P3
  - dedicated web interface
    - request caching
    - secure, cross-platform access to data (https)



ANTARES uses similar database concept since 10+ years

Contact the administrators for assistance.

1st ASTERICS-OBELICS Workshop - Rome - Dec. 2016 - K. Graf, ECAP



#### Resources



- Central services funded through CNRS and INFN, additional services by the collaboration institutes and other service providers ⇒ long-living resources
- processing at CC-IN2P3 and via the EGI-VO km3net.org on ReCaS, INFN facilities, HellasGrid facilities and at UniNa
- data storage:
  - parallel storage of low- and high-level data at CC-Lyon and CNAF (long-term commitments, pledged resources)
  - central services like software repository, central software builds
  - additional resources available (e.g. 500TB HDD disk space at ReCaS via INFN)
- Data transfer between the computing centers based on via WAN/GRID access tools (iRODS and gridFTP) – special interface provided by CC-IN2P3



## **Example of Data Preservation: Open Data Policy**

- central goal: prompt dissemination of scientific results, new methods and implementations; provide cross-experiment simulation data
- KM3NeT data
  - public access to summary data (event information plus quality information) after fixed latency (typically 2 years); defined in MoU
  - web-based downloads of data and software on request
    - more (detailed) data, earlier releases, etc.
  - observer in KM3NeT collaboration (free of charge)
    - access to all data, meetings, etc. (but no voting rights)
      - co-author if he/she contributed to publication
- working on publicising in virtual observatories (already for ANTARES)
- simulation data: CORSIKA production (air showers) for crossexperiment use defined and processed within ASTERICS (CORElib)
- PID discussion followed by GEDE (within RDA)  $\rightarrow$  open point



### **Example of System Preservation: Publications**

- need to preserve primary data that lead to publications for 10 years; including the processing chain
- KM3NeT is currently employing a standard environment (based on SL7 with all necessary software) for all project internal computing
  - central repository (svn, trac, repository server) and automation build service (jenkins, rpm builds)



- working within ASTERICS on solutions to preserve that system, e.g. employing Docker to have this environment platform independent and thus future-safe for re-analysis of data → issue: escalation of permission
- primary data is stored on tapes in central computing centres
   → relatively safe, still no guarantee



## Example of Workflow Management: CC-IN3P3 and CNAF

- Multi-datacenter operation workflow management services and user access:
  - KM3NeT is starting to employ the usage of two large computing centres at the same time - CC-IN2P3 and CNAF;
  - currently no cross-datacentre management tools have been developed/deployed, though solutions are under finalisation; issues:
    - data synchronisation and distribution (intermediate server provided by CC-IN2P3)
    - processing job distribution
    - authorisation and authentication (worked on in ASTERICS)
  - in addition grid facilities are used (simulation data as use case) via EGI VO km3net.org and VOMS at UniNA
  - addition of cloud services: under investigation



## Summary

- KM3NeT is a neutrino experiment, currently in Phase-1
- Data management plan and computing model established  $\Rightarrow$  sustainable also for the next project phases
- KM3NeT collaboration
  - actively uses eCommons (taken over from ANTARES and other experiments)
  - contributes to their further development within ASTERICS
- Several questions open and improvements possible with respect to Workflow management & system preservation
- Discussion, feedback and advice is always welcome!
- supported by:



**ASTERICS - 653477** 

## **Backup Slides**



## **Possible Points of Discussion**

- How to organise the different partners/groups?
  - from e-Infrastructure providers (computing centres and groups of those)
  - over data expert groups
  - to policy making/administrative groups
  - and to the service users (i.e. here the RIs)
- How to streamline e-Services from the service providers to the service users? Usually good services are provided but the users have to choose and implement interfaces to these services on their own.