Transients with IceCube

Anna Franckowiak for the IceCube Collaboration Asterics Workshop, Amsterdam Sept. 28, 2017

Outline

- Neutrino detection with IceCube
- > Transient neutrino sources
- IceCube realtime streams and some first results
- > Outlook

IceCube Coll., JINST 12 P03012 (2017)

Event Signatures

a) through-going muon track E ~ 140 TeV b) Starting muon track E ~ 70 TeV

Charged current interaction of muon neutrino outside / inside the detector volume

Event Signatures

Event Signatures

 $t \ [\mu s]$

- a) through-going muon track E ~ 140 TeV
- b) Starting muon track E ~ 70 TeV
- c) Shower event E ~ 1 PeV
- d) "double bang" event E ~ 200 PeV (not measured yet)

Tau neutrino charged current interaction

hadronic

cascade

W

Only for very large energies the two showers can be separated (otherwise signature c)

hadronic

cascade

Discovery of High-Energy Astrophysical Neutrinos

Origin still unknown

IceCube Coll. ICRC 2017 IceCube Coll., Science 342, 2013 PRL 113, 101101 (2014)

Transient Neutrino Sources

Counterpart of Transient / Variable Sources

Astrophysical High-Energy Neutrinos

Astrophysical High-Energy Neutrinos

Two Approaches To Correlate Neutrinos

> All-sky correlation / stacking

Two Approaches To Correlate Neutrinos

Target of Opportunity (ToO)

IceCube Realtime Streams

Clusters

- Several events from same direction in given time window suppress isotropic atmospheric background
- > Optical follow-up stream (OFU)
- Gamma-ray follow-up stream (GFU)

GFU online stream used by OFU and GFU:

- ~2 events / 5 min
- Well-reconstructed track-like
 events
- atm. neutrinos in Northern Sky, muons in Southern Sky

High-energy events

- Single high-energy events → suppress atmospheric events which follow a softer energy spectrum
- High Energy Starting Events (HESE)
- Extremely High Energy Events (EHE)

IceCube Optical Follow-up Program (OFU)

- > GFU event selection, Northern sky only
- > Clusters of ≥ 2 neutrinos
 - From the same direction ($\Delta \psi \leq 3.5^{\circ}$)
 - Within 100 seconds ($\Delta T \leq 100$ sec)
 - Likelihood term selects most significant doublets
- Forwarded as private GCN via AMON to
 - Optical telescopes (PTF, MASTERS, ASAS-SN) ~ 6 / year
 - X-ray satellite (Swift-XRT) ~ 2 / year

Aiming for short transient such as GRBs or choked-jet supernovae

IceCube Optical Follow-up Program: Supernova Detection

- > 2 neutrinos, 1.6 sec apart (most significant doublet)
- PTF12csy, a very bright supernova type IIn at 300 Mpc
- Chance probability 1.6%
- Supernova 150 days old at time of neutrino detection

DESY

Gamma-Ray Follow-up (GFU)

- > GFU event selection, all-sky
- Clusters from predefined source list
 - Bright, hard and variable GeV γ-ray sources
 - 180 sources: mostly blazars
 - Clusters on all time scales up to 3 weeks
 - p-value calculated for clusters, if threshold is reached alert is sent

Forwarded as

- Email alert to MAGIC and VERITAS ~2/yr
- VOEvent to HESS in preparation
- Private GCN via AMON to Fermi, HAWC in preparation

Aiming for flaring gamma-ray sources such as blazars

Planned Extensions to GFU

- > Update GFU source list to target follow-up with Fermi/HAWC/HESS
- New source list criteria (preliminary, 575 sources)
 - 3FGL: z>0, var index > 77.42 (430 sources)
 - 3FHL: z>0, bayesian block variability > 1 (+20 sources)
 - Plus additional FAVA sources (+125 sources)
- Implement an all-sky clustering algorithm

Fermi source list, IACT source lists are subsets + variable TeV emitters

Real-time Search for Neutrinos and TeV flare Correlation

> Most significant alert: Nov. 9th 2012

> 6 events in 4.2 days, followed up by VERITAS, no counterpart found

Log10(p-value) = -4.64 (0.2% after trials correction)

DESY

IceCube, MAGIC, VERITAS, 2016 JINST 11 P11009

High-Energy Starting Events (HESE)

- Veto against atmospheric muons by outer detector layer
- Starting tracks with Q > 6000 pe
- > Sensitive to E_v > 60 TeV
- ➤ Expensive reconstruction (→ revised alerts after few h)
- > 4 events / year (1 signal/y)
- > Angular resolution:
 - > 0.4 deg (50% confidence)
 - ~1.4 deg (90% confidence)

Extreme High-Energy Events (EHE)

- > Through-going muon tracks
- Combination of charge and zenith cut
- > Sensitive to E_v > 500 TeV
- > 4 events / year (2 signal/y)
- > Angular resolution
 - > 0.2 deg (50% confidence)
 - ~0.8 deg (90% confidence)

Supernova found by Pan-STARRS in public IC Alert

Pan-STARRS

IceCube, ICRC 2017

Pan-STARRS followed up IceCube HESE alert on 2016-04-27 and found a recent supernova at z=0.3:

Light curve consistent with explosion days before neutrino alert

Supernova found by Pan-STARRS in public IC Alert

IceCube, ICRC 2017

Light curve consistent with explosion days before neutrino alert

Supernova found by Pan-STARRS in public IC Alert

IceCube, ICRC 2017

Light curve consistent with explosion days before neutrino alert

Chance probability - { if Ic (associated with GRBs): <1% if Ia (no HE neutrinos exp.): <10%

Gamma-ray Counterpart to ICECUBE-160731

> AGILE gamma-ray signal:

- No prompt emission in +/-1000 sec
- Gamma-ray signal 2 days before the neutrino event (~4σ post-trial significance)
- Possibly HBL blazar

AGILE intensity map (>100MeV)

F. Lucarelli et al, ApJ 846, Vol. 2, p. 121 (2017)

Anna Franckowiak | IceCube | 28.9.2017 | Page 30

Comparison of Streams

Stream	Distribution	Time scale	Median Angular Resolution (90%)	Rate	Signal Fraction
OFU	Private GCN	100 sec	0.5 deg (1.5 deg)	2-6 / yr	0-30%*
GFU	Email (GCN)	< 21 days	predefined source position	2 / yr	
HESE	Public GCN		>0.4 deg (~1.3 deg)	4 / yr	25%
EHE	Public GCN		>0.2 deg (~0.8 deg)	4 / yr	50%

*depends on assumed source density

Public and some private alerts are sent through GCN via AMON

Median latency 33 sec

DISY

http://sites.psu.edu/amon/ Keivani, et al., PoS (ICRC2017) 629

IceCube Fast Response Analysis – What did IceCube see?

- Based on GFU online stream
- Search for neutrino emission in time window <1 week</p>
- > Approval by IceCube Realtime Oversight Committee (ROC)
- Externally triggered

Source	Start Time	Duration	RA	Dec	Extension
	[UTC]	[D:H:M:S]			
PS16cgx	2016-04-26 15:59:12	1:03:46:40	240.33°	$+09.86^{\circ}$	0.0°
Cygnus X-3	2017-04-03 00:00:00	1:00:00:00	308.11°	$+40.96^{\circ}$	0.0°
GRB 170405A	2017-04-05 18:35:49	0:00:20:02	219.83°	-25.24°	0.0°
AGL J0523+0646	2017-04-15 11:50:00	2:00:00:00	080.86°	$+06.78^{\circ}$	0.6°
IceCube 170506A	2017-05-06 00:36:55	1:00:00:00	221.80°	-26.00°	1.0°
AT2017eaw	2017-05-10 12:00:00	3:00:00:00	308.68°	$+60.19^{\circ}$	0.0°

IceCube Coll. ICRC (2017)

Gravitational Waves (GW) and Neutrinos

Search for neutrinos from GW150914 in ANTARES and IceCube data in +/-500 sec \rightarrow no counterpart found

Neutrino could help to constrain direction and teach us about the GW source environment

DESY

LIGO, Virgo, ANTARES, IceCube Phys. Rev. D 93, 122010 (2016)

Future Streams – Work in Progress

- Enhanced Starting Track Event Selection (ESTRES)
 - Improved veto technique compared to HESE
 - Lower energy threshold to ~10 TeV

- Through-going muon stream
 - Like EHE, but with lower energy threshold

- Realtime Cascade stream
 - Bad angular resolution 10-20 deg
 - High signal purity
 - Interesting for search for short transients

Tracks

Declination (Degrees)

45

-45

 10^{3}

Possible Future Multi-Messenger Programs

> Optical ToO with PanSTARRS / DES

- Supernovae, GRBs
- TDEs
- AGN
- > All-sky correlation with ASAS-SN and ZTF
- > Gamma-ray ToO with CTA
 - AGN flares
 - GRBs
- > Time-depend analysis with CTA light curves
 - AGN
- > SKA / eROSITA
 - AGN cores
 - GRBs

Summary

> Neutrinos are unique messengers from the high-energy universe

- Diffuse flux was discovered
- Sources still unknown
- Promising source classes are transient
- IceCube has an established realtime program with several public and private streams and a fast response pipeline
- MoU with several partner observatories in place
- > Open for new collaborations!

