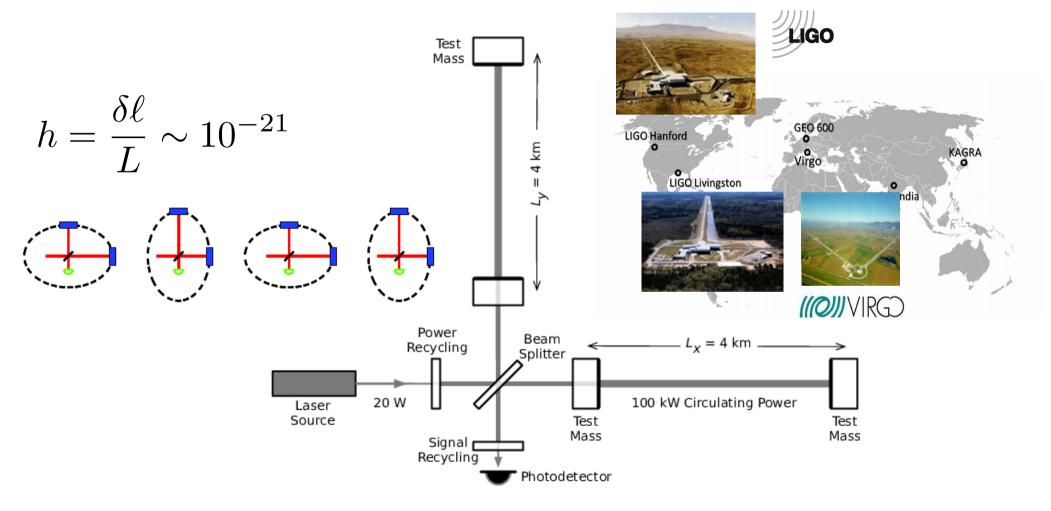
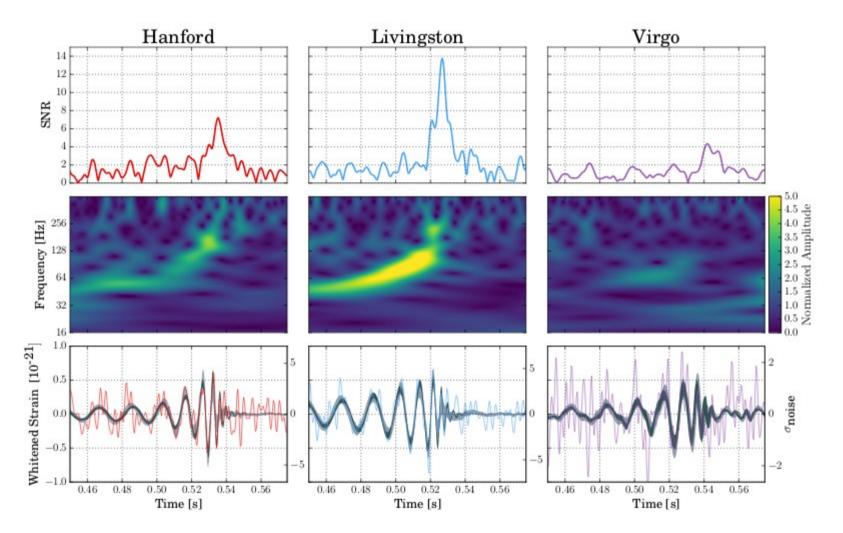
Electromagnetic follow-up of gravitational waves


Eric Chassande-Mottin CNRS AstroParticule et Cosmologie Paris, France (for the LIGO Scientific Collaboration and the Virgo Collaboration)

Coalescence of two black holes (credits: SXS)

Advanced detectors of gravitational waves



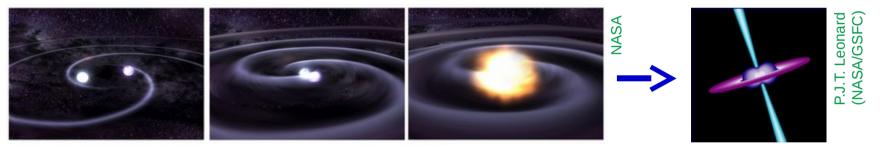
3 to 5 x more sensitive than "initial" detectors x 100 more sensitive at low freq (40 Hz)

Where do we stand?

- aLIGO 1st science run O1 Sep 2015-Jan 2016
 - 2 confirmed BBH events: GW150914, GW151226
 - 1 event candidate: LVT151012
- aLIGO 2nd science run O2 Part 1: Nov 30 2016-Jul 31 2017
 - 1 confirmed BBH event: GW170104
- Advanced Virgo joined O2 Part 2: Aug 1^{st -}Aug 25 2017
 - 1 confirmed BBH event: GW170914 announced in Turin yesterday!
- For O2 Parts 1 & 2:
 - BNS range: LIGO L1 at 80-100 Mpc, H1 at 60-70 Mpc, V1 at ~27 Mpc
 - Only partial results announced so far. Work in progress... **Stay tuned!**

GW170814: three-detector BBH event

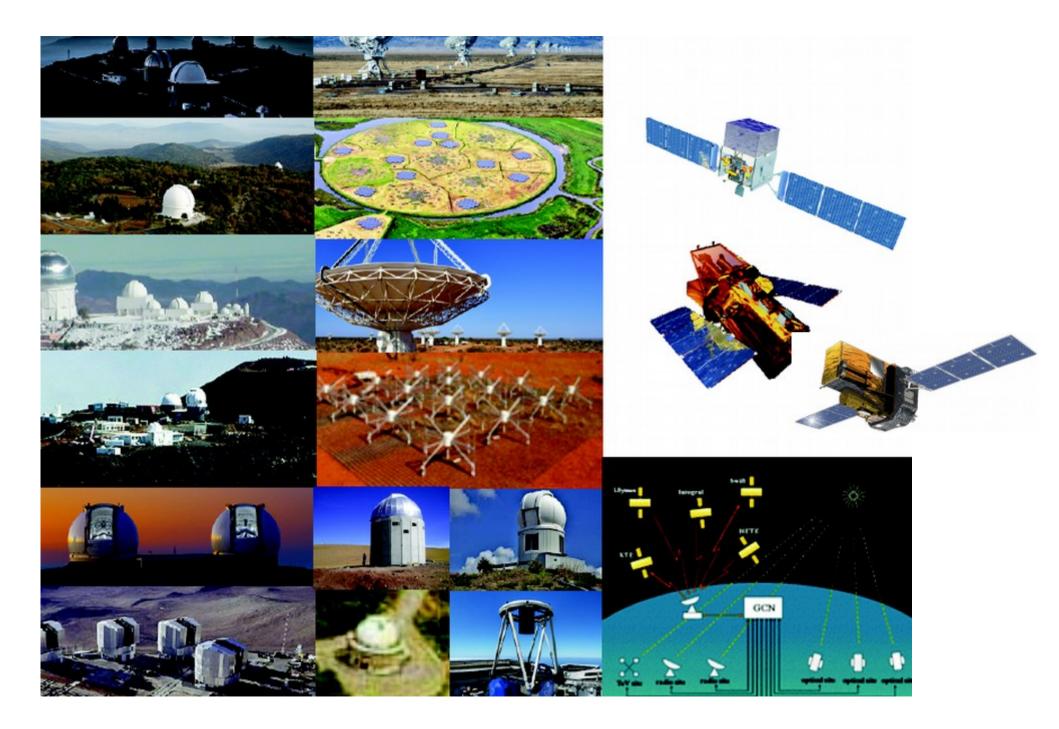
30 Msun – 25 Msun, z ~ .11 Much better sky localization (60 sq deg), non-GR polarization

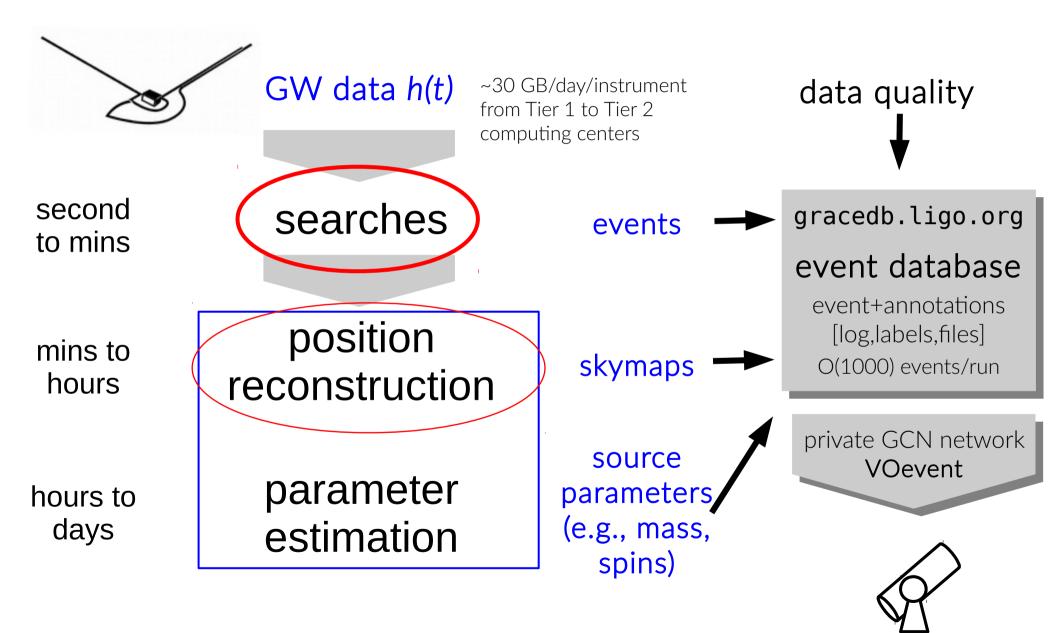

https://dcc.ligo.org/P170814 – Phys. Rev Letters accepted

Outline

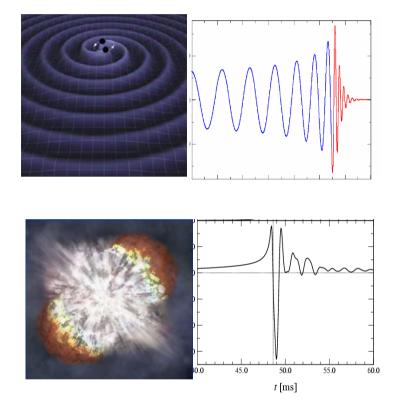
- Motivations and context
- Overview of the low-latency data analysis infrastructure
 - Searches, data quality, source reconstruction, alert handling
- Next steps and outlook

Electromagnetic counterparts to gravitational wave events


- GW emitted energy is enormous
 - GW150914 3 $M_{sun}c^2 \sim 10^{54}$ erg in 100 msec!
 - A (small) fraction of that energy could leak to the electromagnetic spectrum <u>but</u> ...
 - Light unlikely to escape from compact objects such as black holes


- Are **short gamma-ray bursts** associated with compact binary mergers (incl. neutron star)?
 - **Prompt gamma-ray** emission (beamed 5 to 10 degrees)
 - X-ray or optical **afterglow** (observable for small inclination)
 - Kilonova (or macronova) due to radioactive decay of heavy elements in neutron-rich ejecta

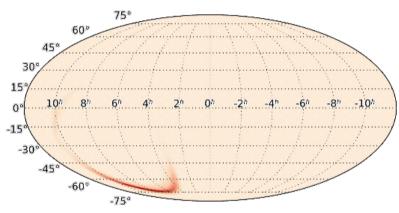
Multimessenger astronomy


- Two approaches for joint GW and EM search
 - "Externally triggered" GW searches
 - Gamma-ray bursts, pulsar glitches, SGR flares, fast radio bursts, near-by supernovae, ... + 20 publications
 - <u>Electromagnetic follow-up of GW alerts (this talk)</u>
 - LIGO & Virgo have signed MOUs with ~80 astronomer groups Cover all accessible wavelengths from radio to very high energies
 - MOU = standard framework to share information promptly while maintaining confidentiality
 - Encourage free communication "inside the bubble"
 - Once GW detections become routine (≥ 4 published), there will be prompt public alerts of high-confidence detections

Workflow – Big picture

GW transient searches

Compact Binary Coalescence (CBC) Known waveform – **Matched filtering** Templates for a range of component masses and spin

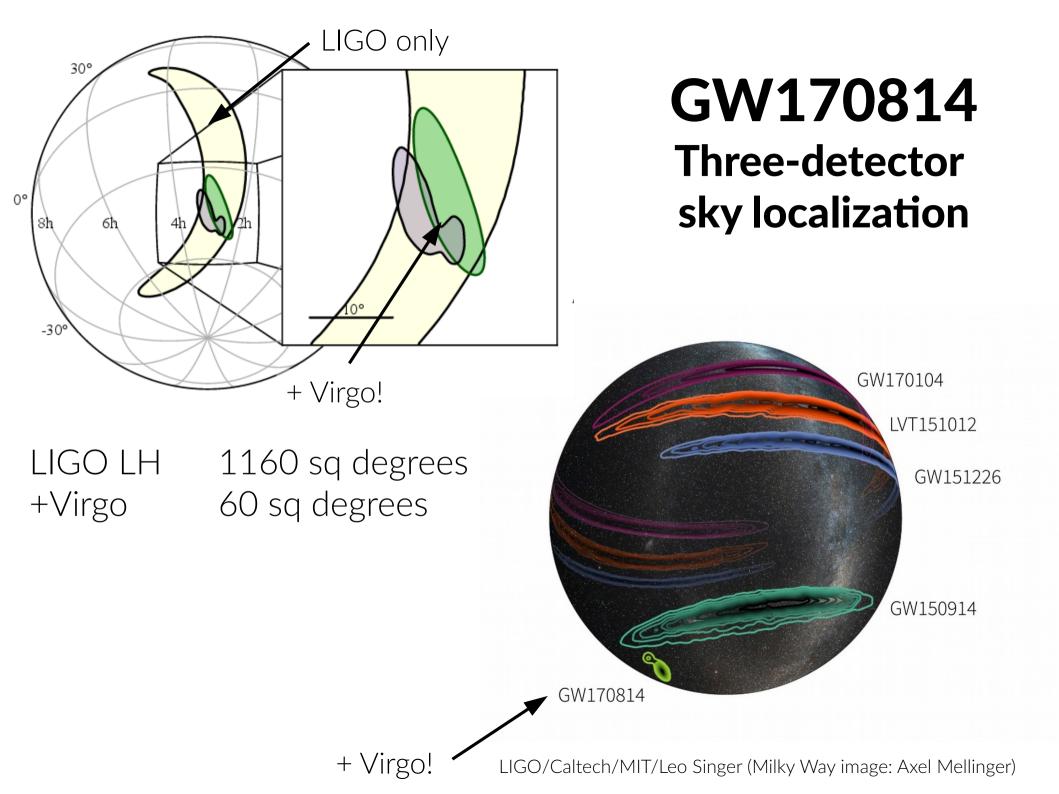

Unmodelled GW Burst (< ~1 sec duration) e.g. from stellar core collapse

Arbitrary waveform – Excess power

Require coherent signals in detectors, using direction-dependent antenna response

- What's special with low-latency searches?
 - Run continuously whenever data from two or more detectors are available Feed immediately the event database
 - Provide event significance against background estimate obtained from limited data

Source direction reconstruction


- Sky localization from multiple detectors
 - "Triangulation" or "aperture synthesis"
 - Uncertainty given by an irregular "banana"shape region in probably skymap
 - Few 100 to 1000 sq degrees with 2 detectors
 Few 10 to 100 sq degrees with 3 detectors

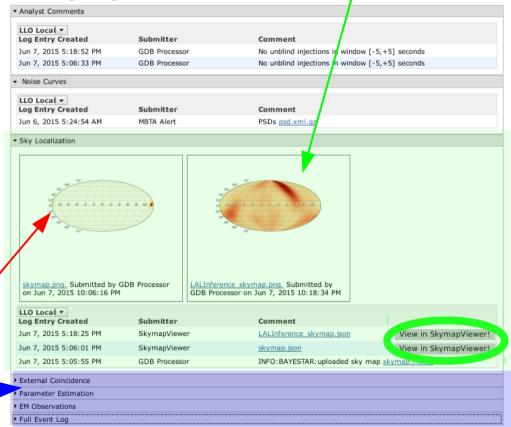
Rapid localization

- From arrival times, phases and amplitudes at each detectors
- Minute latency, arXiv:1508.03634
- Position dependent distance estimate – 3D skymap

• Full Bayesian estimation

- Bayesian coherent parameter estimation
- Hours or days latency

How is the information communicated?


GraceDB – Gravitational Wave Candidate Event DB

UID Labels Grou	p Pipeline Sea	rch Instruments	GPS Time	FAR (Hz) Links	UTC •
UID Labels Grou 58249 CBC	MBTAOnline			FAR (Hz) Links 1.372e-06 Data	2015-06-06 10:24:49 UTC
		,			
oinc Tables		Single Inspira	l Tables		
		IFO	L1	H1	
d Time	1117621400.2060	Channel			
		End Time	1117621400.219121	932 1117621400.2	06010103
		Template Duration	None	None	
tal Mass	9.2271	Effective Distance		459.68568	
		COA Phase	-0.2746053	-1.0825006	
		Mass 1	7.365417	7.365417	
irp Mass	3.0849	Mass 2	1.861673 0.16105389	1.861673 0.16105389	
		η F Final	0.16105389 None	0.16105389 None	
SNR False Alarm Probability	13.6718	SNR	12.637432	5.2167654	
		x ²	None	None	
		x ² DOF	None	None	
		spin1z	-0.2383012	-0.2383012	
		spin2z	0.0005419254	0.0005419254	
eighbors [-5,+5	1				
neighbors in range.					
					/
rolimin	any al	ort in	$2_5 m$	vinc	
			ປ_ງ	11113	
relimir					

With rapid preliminary sky position

Alert updates or retraction <u>within hours</u> Full parameter estimation

- Event Log Messages (add)

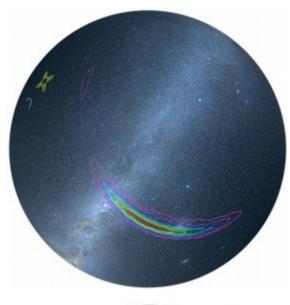
Coincident astrophysical event or EM follow-up observations

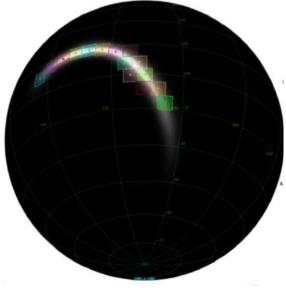
GW alerts

Initial alerts

- Rapid sky localization
- Prompt binary classification (BNS, NS-BH, BBH) based on preliminary mass estimates
- ~30 mins latency on average during O2 with exceptions (special case, human in the loop)

Update alerts


- Full Bayesian estimation
- Hours to days


Layout of a GCN Notice

TITLE: NOTICE DATE:	GCN/LVC NOTICE XXXXXX
NOTICE TYPE:	TEST LVC Initial Skymap
TRIGGER_NUM:	XXXXXX
TRIGGER DATE:	XXXXXX
TRIGGER TIME:	XXXXXX
GROUP_TYPE:	Х
SEARCH_TYPE:	Х
PIPELINE_TYPE:	Х
FAR:	XXXXXX [Hz]
TRIGGER_ID:	XXX
MISC:	XXXXXX
SKYMAP_URL:	https://gracedb.ligo.org/XXX
SKYMAP_BASIC_URL:	https://gracedb.ligo.org/XXX
EVENT_URL:	https://gracedb.ligo.org/XXX

We also send GCN Circulars

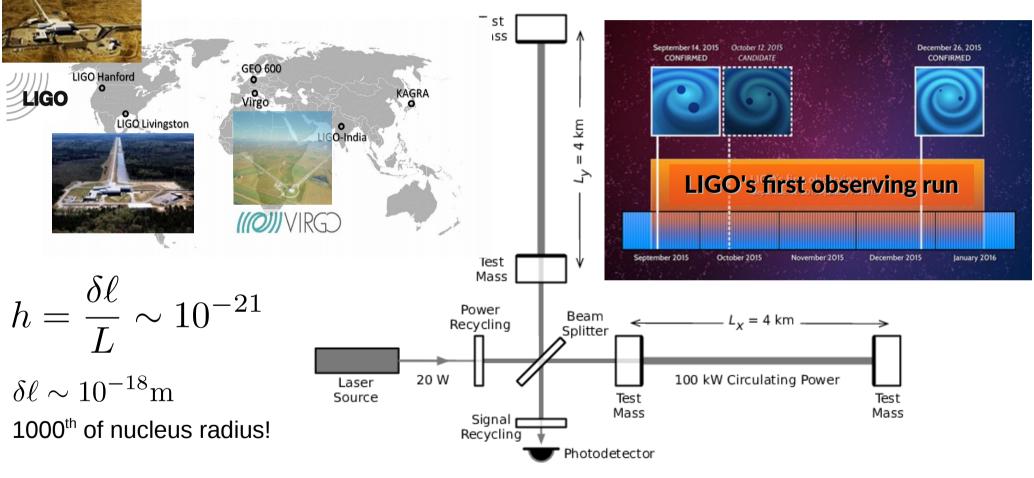
Useful software tools

• Skymap viewer https://losc.ligo.org/s/skymapViewer/

Web-based tool to visualize GW
 skymap and other relevant
 information for follow-up

• GWsky https://github.com/ggreco77/GWsky

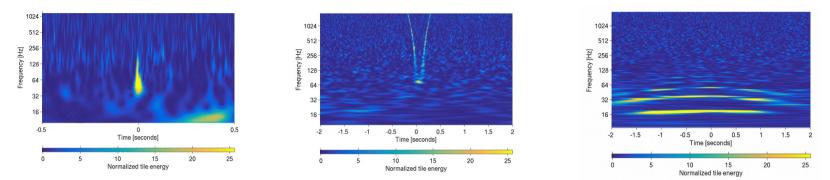
> Set of python scripts that allows to process GW skymaps (tile to a given FOV) and interface with other data (catalog of near-by galaxies, airmass)


Outlook

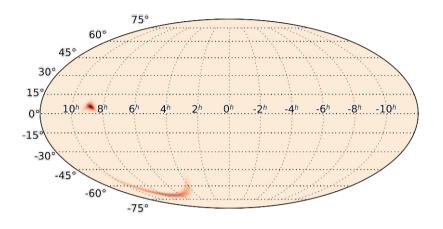
- The world-wide network of gravitational-wave detectors has expanded
 - Three detector in operation!
 - > x 10 better sky localization → 10^{th} sq degree (full coverage "feasible")
- Electromagnetic follow-up program
 - So far, so good!
 - Infrastructure has enabled low-latency of LV data and communication with a large team of astronomer teams around the globe
 - Further improvements planned to further reduce the alert latency
 - Personal comment: reached the limit of GCN Circulars

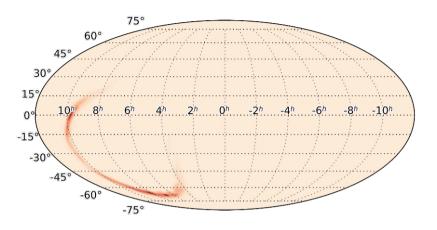
Centralized database for follow-up information (detection and non detection), using queryable machine-readible data is likely to be an important tool for maximizing science in the future

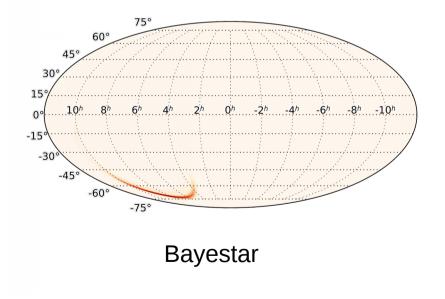
Fin.


Advanced detectors First science run

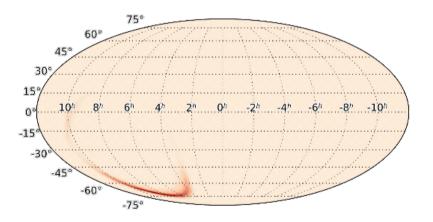
3 to 5 x more sensitive than "initial" detectors
x 100 more sensitive at low frequencies (40 Hz)
10 x space-time volume surveyed so far


Low-latency data quality


• Glitches – non-Gaussian component of instrumental noise


- The origin of glitches can be traced from auxiliary channels and control loop signals
 - 200 000 auxiliary channels (seismometers, magnetometers, ...)
 - Large effort to characterize detector noise
 - Attempts to automatize using machine learning
- When eligible events occur, Ivalert daemon interrogates
 - an online data-quality monitor (iDQ) "glitchiness report"
 - the **data quality segment database** (and data quality vector state)

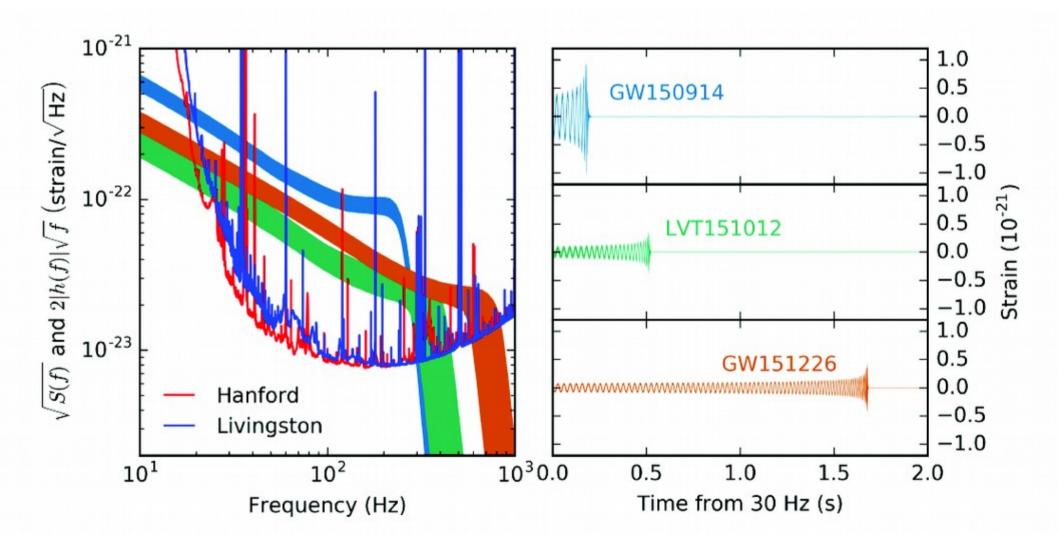
Credits for the glitches: Coughlin, Smith et al, Gravity-spy zooniverse.org



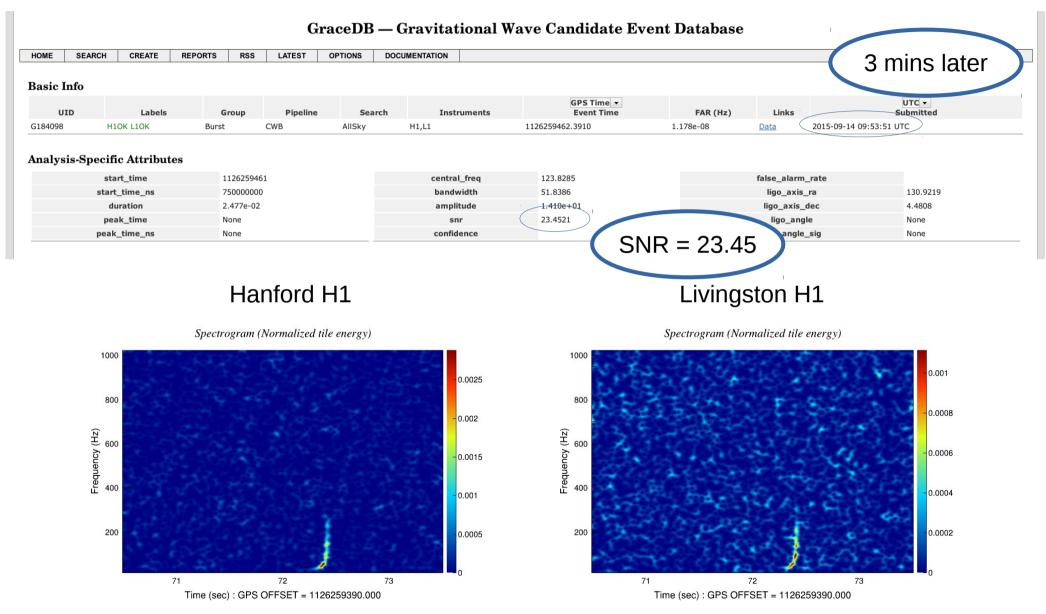
coherent WaveBurst (first skymap communicated)

oLIB (first skymap communicated)

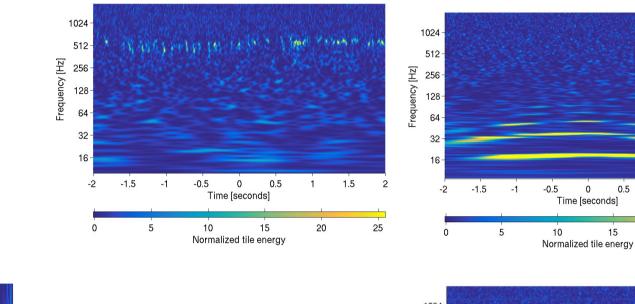
Final, LAL inference (full Bayesian param estimation)

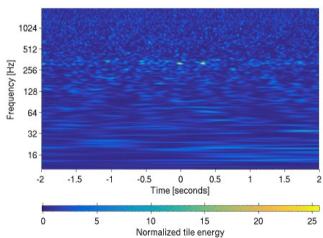

Can a binary black hole merger produce a detectable EM transient?

We don't expect a stellar-mass binary black hole system to have enough matter around for the final BH to accrete and form a relativistic jet [e.g., Lyutikov, arXiv:1602.07352] — or can it? **Various models have been proposed:**


- Single star [Fryer+ 2001; Reisswig+ 2013; Loeb 2016, ApJL 819]: collapse of a very massive, rapidly rotating stellar core, which fissions into a pair of black holes which then merge; but see Woosley, arXiv:1603.00511v2 for modeling that does not support
- Instant BBH [Janiuk+ 2013, A&A 560; arXiv:1604.07132]: massive star-BH binary triggers collapse of star to BH, then immediate inspiral and merger; final BH can be kicked into circumbinary disk and accrete from it
- BBH with fossil disk [Perna+ 2016, ApJL 821]: activates and accretes long-lived cool disk
- **BBH embedded in AGN disk** [Bartos+, arXiv:1602.03831; Stone+ 2016, MNRAS]: binary merger assisted by gas drag and/or 3-body interactions in AGN disk, which provides material to accrete
- **Third body** [Seto&Muto 2011, cited in Murase+ 2016, ApJL 822]: tidal disruption of a star in a hierarchical triple with the BBH at time of merger
- Charged BHs [Zhang 2016, ApJL 827; Liebling&Palenzuela 2016, PRD 84]: Merging BHs with electric (or magnetic monopole!) charge could produce a detectable EM transient
 Magnetic reconnection [Fraschetti, arXiv:1603.01950]

Also models for high-energy neutrino and ultra-high energy cosmic ray emission


Review – courtasy of Peter Shawhan (Maryland)



Sep 14, 2015 09:50:45 UTC

Glitch zoo

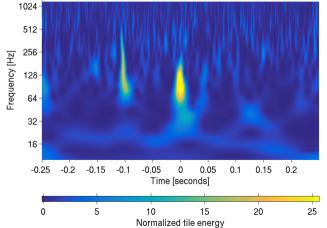
0

Time [seconds]

10

0.5

15


1

20

1.5

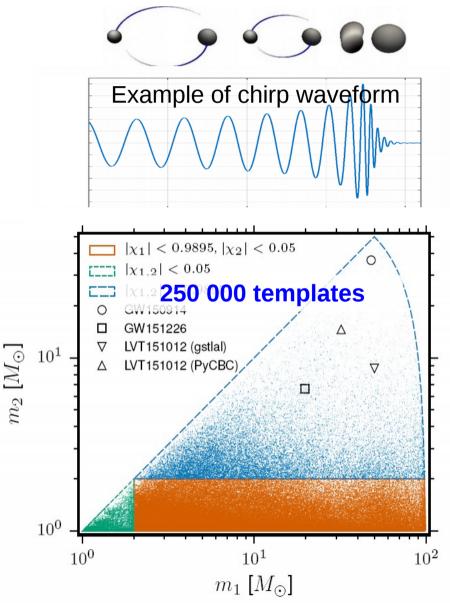
2

25

Credits: Coughlin, Smith et al, Gravity-spy zooniverse.org

VOevent

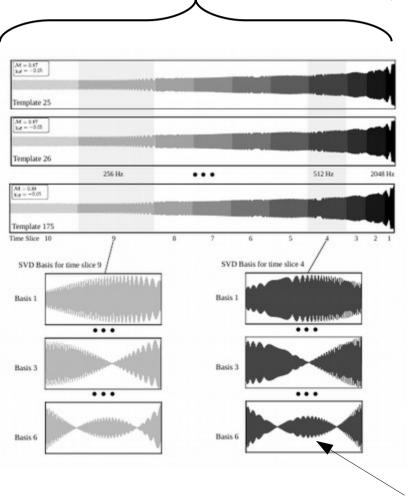
Example of preliminary alert formatted as a VO event


<?xml version="1.0" encoding="UTF-8"?> <voe:V0Event xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre> xmlns:voe="http://www.ivoa.net/xml/VOEvent/v2.0" xsi:schemaLocation="http://www.ivoa.net/xml/V0Event/v2.0 http://www.ivoa.net/xml/V0Event/V0Event-v2.0.xsd" version="2.0" role="test" ivorn="ivo://gwnet/gcn sender#M137606-1-Preliminarv"> <Who> <Date>2015-04-22T21:12:08</Date> <Author> <contactName>LIG0 Scientific Collaboration and Virgo Collaboration</contactName> </Author> </Who><What> <Param name="Pkt Ser Num" dataType="string" value="1"/> <Param name="GraceID" dataType="string" value="M137606" ucd="meta.id"> <Description>Identifier in GraceDB</Description> </Param> <Param name="AlertType" dataType="string" value="Preliminary" ucd="meta.version" unit=""> <Description>VOEvent alert type</Description> </Param> <Param name="EventPage" dataType="string" value="https://gracedb.ligo.org/events/M137606" ucd="meta.ref.url"> <Description>Web page for evolving status of this candidate event</Description> </Parama <Param name="Instruments" dataType="string" value="H1,L1" ucd="meta.code"> <Description>List of instruments used in analysis to identify this event</Description> </Param> <Param name="FAR" dataType="float" value="3.77232633462e-14" ucd="arith.rate;stat.falsealarm" unit="Hz"> <Description>False alarm rate for GW candidates with this strength or greater</Description> </Param> <How> <Param name="Pipeline" dataType="string" value="gstlal" ucd="meta.code" unit=""> <Description>Low-latency data analysis pipeline</Description> </Param> <Param name="Search" dataType="string" value="MDC" ucd="meta.code" unit=""> <Description>Specific low-latency search</Description> </How> </Param> <Param name="ChirpMass" dataType="float" value="1.12945318222" ucd="phys.mass" unit="solar mass"> <Description>Estimated CBC chirp mass</Description> </Param> <Param name="Eta" dataType="float" value="0.245523989341" ucd="phys.mass;arith.factor" unit=""> <Description>Estimated ratio of reduced mass to total mass</Description> </Param> <Param name="MaxDistance" dataType="float" value="111.63056" ucd="pos.distance" unit="Mpc"> <Description>Estimated maximum distance for CBC event</Description> </Param>

<WhereWhen> <ObsDataLocation> <ObservatoryLocation id="LIGO Virgo"/> <ObservationLocation> <AstroCoordSystem id="UTC-FK5-GEO"/> <AstroCoords coord system id="UTC-FK5-GEO"> <Time> <TimeInstant> <ISOTime>2010-09-27T14:09:05.425029</ISOTime> </TimeInstant> </Time> <Position2D> <Value2> <C1>0.000000</C1> <C2>0.000000</C2> </Value2> <Error2Radius>180.000000</Error2Radius> </Position2D> </AstroCoords> </ObservationLocation> </ObsDataLocation> </WhereWhen> <Description>Candidate gravitational wave event identified by low-latency analysis</Description> <Description>H1: LIGO Hanford 4 km gravitational wave detector</Description> <Description>L1: LIGO Livingston 4 km gravitational wave detector</Description>

<Description>Report of a candidate gravitational wave event</Description> </voe:VOEvent>

</What>


Searches for compact binary coalescences (1)

- Pattern matching
 - Correlate data with the expected waveform from astrophys. model
 - Template bank that covers the space of astrophysical signals
 - Reject background
 - Control goodness-of-fit using χ² test of candidate's spectra to mitigate instrumental transient noise (glitch)
 - Get coincident event across detectors (time and source params)
- Measure candidate significance
 - From surrogate data obtained by timeshifting detector streams with unphysical delays

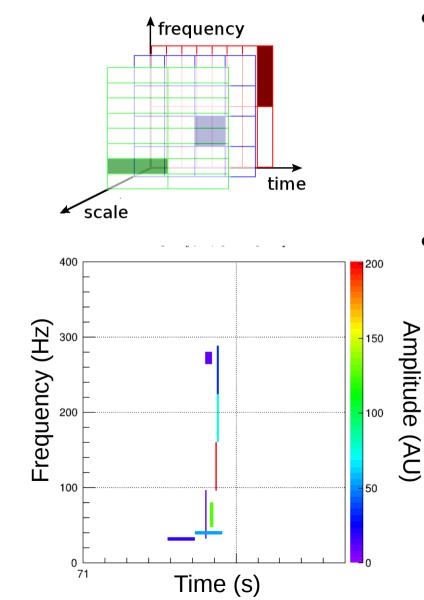
Searches for compact binary coalescences (2)

Block of similar template waveforms is time-sliced

Two low-latency pipelines

Includes tricks to run faster

Multi-Band Template Analysis (MBTA)


 divides freq. band into low/high subbands → lower number of templates in each subbands and lower sample rate – arxiv:1507.01787

GstLAL (derived from Gstreamer lib)

- Time-domain filtering rather than frequencydomain (allows second latency)
- Template bank transformed into reduced set of orthonormal filters by block-wise SVD
- ... and other tricks, arXiv:1604.04324

< 10 SVD basis filters per slice

Searches for generic GW transients

- Principle
 - Search for excess-power occurring coherently across detectors
 - Multiple low-latency pipelines: cWB, oLIB, Bayeswave – arXiv:1602.03843

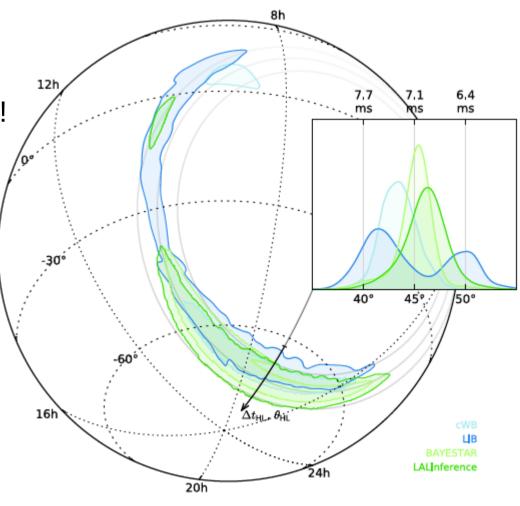
• Coherent waveburst arXiv:1511.05999

- Data are transformed into time-frequency domain (multiscale Wilson transform)
- Retain time-frequency "outliers" and combine coherently:

compensate time and phase offset at each detector (aking to synthetic aperture, beamforming)

 Select clusters that appears "phase"coherent for a given sky location

Sep 14, 2015 (1)


GW localization regions are large!

With two detectors only, bimodal rings of 100–1000 of deg² typically

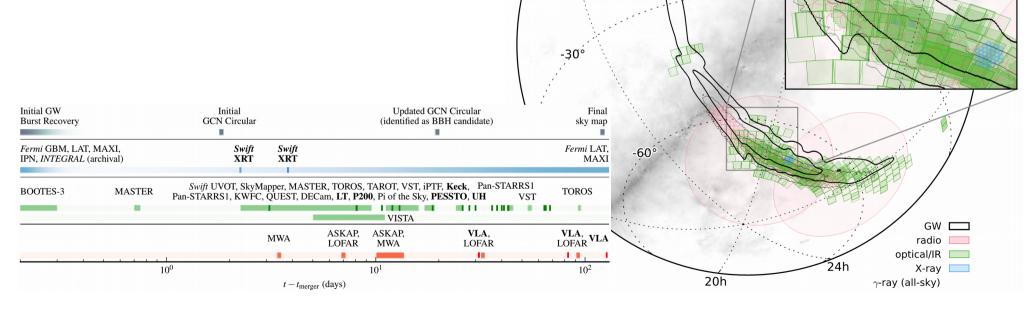
GW150914 90 % localization is 600 sq degrees!

Challenging!

Coverage and lots of associated transients

Sep 14, 2015 (2)

12h


∕_{0°} ⊙ Moon

⊙ Sun

25 observing teams, 50 GCN Circulars, 12 publications

Covered most of skymap area at a wide range of wavelengths starting within a few hours

Key element: archival data from high-energy instruments in orbit

Abbott et al, ApJL 826, L13