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Advanced detectors
of gravitational waves

3 to 5 x more sensitive than “initial” detectors

x 100 more sensitive at low freq (40 Hz)



  

Where do we stand?

● aLIGO 1st science run O1 – Sep 2015-Jan 2016
 2 confirmed BBH events: GW150914, GW151226

 1 event candidate: LVT151012

● aLIGO 2nd science run O2 – Part 1: Nov 30 2016-Jul 31 2017 

 1 confirmed BBH event: GW170104

● Advanced Virgo joined O2 – Part 2: Aug 1st –Aug 25 2017
 1 confirmed BBH event: GW170914 announced in Turin yesterday!

● For O2 Parts 1 & 2:
 BNS range: LIGO L1 at 80-100 Mpc, H1 at 60-70 Mpc, V1 at ~27 Mpc 

 Only partial results announced so far. Work in progress… Stay tuned!



  

GW170814: three-detector BBH event

https://dcc.ligo.org/P170814  – Phys. Rev Letters accepted

30 Msun – 25 Msun, z ~ .11
Much better sky localization (60 sq deg), non-GR polarization

https://dcc.ligo.org/P170814


  

Outline

● Motivations and context
● Overview of the low-latency data analysis infrastructure

– Searches, data quality, source reconstruction, alert handling

● Next steps and outlook 



  

Electromagnetic counterparts 
to gravitational wave events

● GW emitted energy is enormous
– GW150914 – 3 Msun c

2 ~ 1054 erg in 100 msec!
– A (small) fraction of that energy could leak to the electromagnetic 

spectrum but ...
– Light unlikely to escape from compact objects such as black holes 

● Are short gamma-ray bursts associated with compact 
binary mergers (incl. neutron star)?
– Prompt gamma-ray emission (beamed – 5 to 10 degrees) 
– X-ray or optical afterglow (observable for small inclination)
– Kilonova (or macronova) due to radioactive decay of heavy 

elements in neutron-rich ejecta
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Multimessenger astronomy

● Two approaches for joint GW and EM search
– “Externally triggered” GW searches  

● Gamma-ray bursts, pulsar glitches, SGR flares, fast radio bursts, 
near-by supernovae, …  + 20 publications

– Electromagnetic follow-up of GW alerts (this talk)
● LIGO & Virgo have signed MOUs with ~80 astronomer groups

Cover all accessible wavelengths from radio to very high energies
● MOU = standard framework to share information promptly while 

maintaining confidentiality
● Encourage free communication “inside the bubble” 
● Once GW detections become routine (≥ 4 published), there will be 

prompt public alerts of high-confidence detections



  



  

Workflow – Big picture

GW data h(t)

second 
to mins

searches events

parameter
estimation

hours to
days

position
reconstruction

mins to
hours

skymaps

source
parameters
(e.g., mass, 

spins)

gracedb.ligo.org

event database
event+annotations

[log,labels,files]
O(1000) events/run

gracedb.ligo.org

event database
event+annotations

[log,labels,files]
O(1000) events/run

data quality 

private GCN network
VOevent

~30 GB/day/instrument
from Tier 1 to Tier 2 
computing centers



  

GW transient searches

● What's special with low-latency searches?
● Run continuously whenever data from two or more detectors 

are available – Feed immediately the event database
● Provide event significance against background estimate 

obtained from limited data

Compact Binary Coalescence (CBC)
Known waveform – Matched filtering
Templates for a range of component masses
and spin 

Unmodelled GW Burst (< ~1 sec duration)
e.g. from stellar core collapse

Arbitrary waveform – Excess power
Require coherent signals in detectors,
using direction-dependent antenna response



Source direction reconstruction

● Sky localization from multiple 
detectors
– “Triangulation” or “aperture synthesis”
– Uncertainty given by an irregular “banana”-

shape region in probably skymap
– Few 100 to 1000 sq degrees with 2 detectors

Few 10 to 100 sq degrees with 3 detectors

● Full Bayesian estimation
– Bayesian coherent parameter 

estimation
– Hours or days latency

● Rapid localization 
– From arrival times, phases and 

amplitudes at each detectors
– Minute latency,  

arXiv:1508.03634
– Position dependent distance 

estimate – 3D skymap



  

With Virgo

+ Virgo! LIGO/Caltech/MIT/Leo Singer (Milky Way image: Axel Mellinger)

+ Virgo!

LIGO only

GW170814
Three-detector 
sky localization

LIGO LH 1160 sq degrees
+Virgo 60 sq degrees



How is the information 
communicated?

Preliminary alert in 3-5 mins

Alert updates or retraction within hours
Full parameter estimation

Initial alert issued in 30 mins
With rapid preliminary sky position Coincident astrophysical event 

or EM follow-up observations

GraceDB – Gravitational Wave Candidate Event DB



GW alerts

Initial alerts
– Rapid sky localization
– Prompt binary classification (BNS, 

NS-BH, BBH) based on preliminary 
mass estimates

– ~30 mins latency on average during 
O2 with exceptions (special case, 
human in the loop)

Update alerts
– Full Bayesian estimation
– Hours to days We also send GCN Circulars

Layout of a GCN Notice



  

Useful software tools

● Skymap viewer
https://losc.ligo.org/s/skymapViewer/

– Web-based tool to visualize GW 
skymap and other relevant 
information for follow-up

● GWsky
https://github.com/ggreco77/GWsky

– Set of python scripts that allows 
to process GW skymaps (tile to 
a given FOV) and interface with 
other data (catalog of near-by 
galaxies, airmass)



  

Outlook
● The world-wide network of gravitational-wave 

detectors has expanded
– Three detector in operation!
– > x 10 better sky localization → 10th sq degree (full coverage 

“feasible”)

● Electromagnetic follow-up program
– So far, so good!
– Infrastructure has enabled low-latency of LV data and  

communication with a large team of astronomer teams around 
the globe

– Further improvements planned to further reduce the alert latency
– Personal comment: reached the limit of GCN Circulars

Centralized database for follow-up information (detection and 
non detection), using queryable machine-readible data is likely 
to be an important tool for maximizing science in the future



  

Fin.



  

Advanced detectors 
First science run 

1000th of nucleus radius!

3 to 5 x more sensitive than “initial” detectors

x 100 more sensitive at low frequencies (40 Hz)

10 x space-time volume surveyed so far 

LIGO's first observing runLIGO's first observing run



  

Low-latency data quality
● Glitches – non-Gaussian component of instrumental noise

● The origin of glitches can be traced from auxiliary channels 
and control loop signals
– 200 000 auxiliary channels (seismometers, magnetometers, …)
– Large effort to characterize detector noise
– Attempts to automatize using machine learning

● When eligible events occur, lvalert daemon interrogates 
– an online data-quality monitor (iDQ) – “glitchiness report”
– the data quality segment database (and data quality vector state)

Credits for the glitches: Coughlin, Smith et al, Gravity-spy zooniverse.org



  

Final, LAL inference
(full Bayesian param estimation)

oLIB
(first skymap communicated)

coherent WaveBurst
(first skymap communicated)

Bayestar



)))
We don’t expect a stellar-mass binary black hole system to have enough matter around for 
the final BH to accrete and form a relativistic jet [e.g., Lyutikov, arXiv:1602.07352] — or can it? 
 Various models have been proposed:
Single star [Fryer+ 2001; Reisswig+ 2013; Loeb 2016, ApJL 819]: collapse of a very massive, rapidly 

rotating stellar core, which fissions into a pair of black holes which then merge; but see Woosley, 
arXiv:1603.00511v2 for modeling that does not support

Instant BBH [Janiuk+ 2013, A&A 560; arXiv:1604.07132]: massive star-BH binary triggers collapse of 
star to BH, then immediate inspiral and merger; final BH can be kicked into circumbinary disk and 
accrete from it

BBH with fossil disk [Perna+ 2016, ApJL 821]: activates and accretes long-lived cool disk

BBH embedded in AGN disk [Bartos+, arXiv:1602.03831; Stone+ 2016, MNRAS]: 
binary merger assisted by gas drag and/or 3-body interactions in AGN disk, which provides 
material to accrete

Third body [Seto&Muto 2011, cited in Murase+ 2016, ApJL 822]: tidal disruption of a star in a 
hierarchical triple with the BBH at time of merger

Charged BHs [Zhang 2016, ApJL 827; Liebling&Palenzuela 2016, PRD 84]: Merging BHs with 
electric (or magnetic monopole!) charge could produce a detectable EM transient

Magnetic reconnection [Fraschetti, arXiv:1603.01950]

Also models for high-energy neutrino and ultra-high energy cosmic ray emission

Review – courtasy of Peter Shawhan (Maryland)

Can a binary black hole merger produce 
a detectable EM transient? 



  



  

Sep 14, 2015  09:50:45 UTC

Hanford H1 Livingston H1

SNR = 23.45

3 mins later



Glitch zoo

Credits: Coughlin, Smith et al, Gravity-spy zooniverse.org



<?xml version="1.0" encoding="UTF-8"?>
<voe:VOEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:voe="http://www.ivoa.net/xml/VOEvent/v2.0" 
xsi:schemaLocation="http://www.ivoa.net/xml/VOEvent/v2.0 
http://www.ivoa.net/xml/VOEvent/VOEvent-v2.0.xsd" version="2.0" role="test" 
ivorn="ivo://gwnet/gcn_sender#M137606-1-Preliminary">
    <Who>
        <Date>2015-04-22T21:12:08</Date>
        <Author>
            <contactName>LIGO Scientific Collaboration and Virgo Collaboration</contactName>
        </Author>
    </Who>
    <What>
        <Param name="Pkt_Ser_Num" dataType="string" value="1"/>
        <Param name="GraceID" dataType="string" value="M137606" ucd="meta.id">
            <Description>Identifier in GraceDB</Description>
        </Param>
        <Param name="AlertType" dataType="string" value="Preliminary" ucd="meta.version" unit="">
            <Description>VOEvent alert type</Description>
        </Param>
        <Param name="EventPage" dataType="string" value="https://gracedb.ligo.org/events/M137606" ucd="meta.ref.url">
            <Description>Web page for evolving status of this candidate event</Description>
        </Param>
        <Param name="Instruments" dataType="string" value="H1,L1" ucd="meta.code">
            <Description>List of instruments used in analysis to identify this event</Description>
        </Param>
        <Param name="FAR" dataType="float" value="3.77232633462e-14" ucd="arith.rate;stat.falsealarm" unit="Hz">
            <Description>False alarm rate for GW candidates with this strength or greater</Description>
        </Param>
        <Param name="Pipeline" dataType="string" value="gstlal" ucd="meta.code" unit="">
            <Description>Low-latency data analysis pipeline</Description>
        </Param>
        <Param name="Search" dataType="string" value="MDC" ucd="meta.code" unit="">
            <Description>Specific low-latency search</Description>
        </Param>
        <Param name="ChirpMass" dataType="float" value="1.12945318222" ucd="phys.mass" unit="solar mass">
            <Description>Estimated CBC chirp mass</Description>
        </Param>
        <Param name="Eta" dataType="float" value="0.245523989341" ucd="phys.mass;arith.factor" unit="">
            <Description>Estimated ratio of reduced mass to total mass</Description>
        </Param>
        <Param name="MaxDistance" dataType="float" value="111.63056" ucd="pos.distance" unit="Mpc">
            <Description>Estimated maximum distance for CBC event</Description>
        </Param>

    </What>

VOevent

    <WhereWhen>
        <ObsDataLocation>
            <ObservatoryLocation id="LIGO Virgo"/>
            <ObservationLocation>
                <AstroCoordSystem id="UTC-FK5-GEO"/>
                <AstroCoords coord_system_id="UTC-FK5-GEO">
                    <Time>
                        <TimeInstant>
                            <ISOTime>2010-09-27T14:09:05.425029</ISOTime>
                        </TimeInstant>
                    </Time>
                    <Position2D>
                        <Value2>
                            <C1>0.000000</C1>
                            <C2>0.000000</C2>
                        </Value2>
                        <Error2Radius>180.000000</Error2Radius>
                    </Position2D>
                </AstroCoords>
            </ObservationLocation>
        </ObsDataLocation>
    </WhereWhen>
    <How>
     <Description>Candidate gravitational wave event identified by low-latency analysis</Description>
        <Description>H1: LIGO Hanford 4 km gravitational wave detector</Description>
        <Description>L1: LIGO Livingston 4 km gravitational wave detector</Description>

    </How>
    <Description>Report of a candidate gravitational wave event</Description>
</voe:VOEvent>

Example of preliminary alert 
formatted as a VO event



  

Searches for compact binary 
coalescences (1)

● Pattern matching
– Correlate data with the expected 

waveform from astrophys. model
– Template bank that covers the space of 

astrophysical signals

● Reject background
– Control goodness-of-fit using 2 test of 

candidate's spectra to mitigate 
instrumental transient noise (glitch)

– Get coincident event across detectors 
(time and source params)

● Measure candidate significance
– From surrogate data obtained by time-

shifting detector streams with 
unphysical delays

Example of chirp waveform

250 000 templates



  

Searches for compact binary 
coalescences (2)

● Two low-latency pipelines
– Includes tricks to run faster

● Multi-Band Template Analysis (MBTA)
– divides freq. band into low/high subbands → 

lower number of templates in each subbands 
and lower sample rate – arxiv:1507.01787

● GstLAL (derived from Gstreamer lib) 
– Time-domain filtering rather than frequency-

domain (allows second latency)
– Template bank transformed into reduced set 

of orthonormal filters by block-wise SVD
– … and other tricks, arXiv:1604.04324

< 10 SVD basis filters per slice 

Block of similar template 
waveforms is time-sliced



  

● Principle
– Search for excess-power occurring 

coherently across detectors 

– Multiple low-latency pipelines: cWB, 
oLIB, Bayeswave – arXiv:1602.03843 

● Coherent waveburst arXiv:1511.05999

– Data are transformed into time-frequency 
domain (multiscale Wilson transform)

– Retain time-frequency “outliers” and 
combine coherently:
compensate time and phase offset at each 
detector (aking to synthetic aperture, 
beamforming)

– Select clusters that appears “phase”-
coherent for a given sky location

Searches for generic GW transients
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Sep 14, 2015 (1)

Abbott et al, ApJL 826, L13

GW localization regions are large!
With two detectors only, bimodal rings of 100–1000 of deg2 typically

GW150914 

90 % localization is 600 sq degrees!

Challenging!
Coverage and 
lots of associated transients



  

Sep 14, 2015 (2)

25 observing teams, 50 GCN Circulars, 12 publications

Covered most of skymap area at a wide range of wavelengths
starting within a few hours

Key element: archival data from
high-energy instruments in orbit

Abbott et al, ApJL 826, L13
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