

H.E.S.S. multi-messenger and real-time follow-up observations

Fabian Schüssler (Irfu/CEA-Saclay)

Radio-Gamma workshop, Amsterdam, 09/2017

The H.E.S.S. transient and multi-messenger program

AGN flares, binaries, novae, etc.

- broad MWL input; typical timescales: hours-days
- typically manual scheduling of follow-ups
- Gamma-ray bursts
 - driving science case for the rapid transient program (rapidity, low energy threshold, etc.)
- Gravitational waves
 - follow-up difficult due to large localization uncertainties
 - important input from additional EM detection, galaxy catalogs, etc.
 - benefit from large FoV

Neutrinos

- high-energy events (e.g. HESE)
- neutrino "flares"
- Fast Radio Bursts
 - manual -> automatic (?)

Galactic transients

- Pulsars, Binaries, etc.
 - known periods, scheduled observations

- Microquasars
 - state transitions in X-rays (e.g. low-hard to high-soft: jet disruption, plasma ejections, etc.)
 - e.g.: GRS 1915+105, Circinus X-1, and V4641 Sgr
 - no detection (observation times not very promising)

H.E.S.S.

Fabian Schüssler

Radio-Gamma, Amsterdam 09/2017

H. Abdalla et al. (H.E.S.S.), A&A 2016, arXiv: 1607.04613

Flares from Active Galactic Nuclei

- high flux enables/facilitates source detections + detailed analyses
- H.E.S.S. monitoring program
 - e.g. PKS 1510-089 => flare in May 2016

M. Zacharia et al., PoS(ICRC2017)654+655

Flares from Active Galactic Nuclei

- high flux enables/facilitates source detections + detailed analyses
- H.E.S.S. monitoring program
 - e.g. PKS 1510-089 => flare in May 2016
- input from other observatories
 - automatic Fermi-LAT analyses (e.g. FlaapLUC)
 - dedicated monitoring shifts
 - triggering of MWL follow-up (e.g. ATOM, Swift, etc.)
- recent TeV discovery: PKS 1749+096 (together with MAGIC)

Dedicated, long-term monitoring

H.E.S

HAWC: full-sky monitoring

Fabian Schüssler

HAWC: Mrk421 flare in January 2017

H.E.S.S. upgrade Source of the Month

H.E.S.S. II: ToO follow-up performance

- main design principles of the H.E.S.S. 28m telescope
 - large photon collection area → 614 m² mirror area (largest IACT worldwide)
 - rapid response time

H.E.S.S. II: ToO follow-up performance

- main design principles of the H.E.S.S. 28m telescope

 - rapid response time

H.E.S.S.

GRB follow-up with H.E.S.S.

- extensive follow-up program during H.E.S.S. phase I (e.g. A&A 495, 505-512 (2009))
- follow-up speed significantly increased with H.E.S.S. II
 - rapid slewing speed
 - fully automatic repositioning after the reception of a GCN alert
 - dedicated operation mode (e.g. data taking starts as soon as source enters the FoV)
 - GRBs have highest ToO priority (following all accessible alerts)

H.E.S

13

H.E.S

H.E.S

GRB follow-up: first results

- strict data blinding procedure fixing reconstruction, cuts, analysis strategy, etc.
- GRB140818B
 - RA= +18h 04m 35s ; Dec=-01d 21' 40" (J2000)
 - **T0:** 18:44:16 UTC
- H.E.S.S. observations
 - starting 18:45:42 UT (<2min after the GRB)</p>
 - mono analysis optimized for low energies

Run	Time since T0 [min]	Integral Flux (E>100GeV) [m ⁻² s ⁻¹]
1	2-30	3.9e-11
2	31-59	2.6e-11
3	60-88	5.1e-11
4	89-117	1.8e-11

Fabian Schüssler

Radio-Gamma, Amsterdam 09/2017

Multi-messenger program: IceCube HESE tracks

- H.E.S.S. observations of IceCube High Energy Starting Events
 - track like events (angular uncertainty < FoV)</p>
 - H.E.S.S. visibility + constrains by other observations
 - high energy, etc.

IceCube HESE tracks: H.E.S.S.

H.E.S.

FS et al., ICRC 2015, arXiv:1509.03035 FS et al., Gamma 2016

Future of the H.E.S.S. Multi-messenger program: alerts and ToOs

- Interpretation of potential gamma-ray source within the neutrino error box difficult (has to rely on basic energetics and follow-up observations)
- Space and time correlations would provide "smoking gun" signal for joint emission processes => CR interaction/acceleration

H.E.S.S. reaction to Multi-messenger alerts and ToOs

IceCube

- real-time alerts on HESE + EHE events
- expected delays O(min)

Example: IC-HESE-160427

ANTARES

- online reconstruction and rapid alert emission: TAToO (Ageron et al., APP 35 (2012) 530)
- delays O(10s)

Follow-up of alerts from high-energy neutrino telescopes

IceCube HESE+EHE alerts H.E.S.S. + MAGIC + VERITAS + HAWC + FACT

Example: IC-HESE-160427

VERITAS

- 3.2 hrs obs - 120s delay

FACT GCN Cicular #19427 4.2 hr obs, ~20 hr delay

GCN CIRCULAR TITLE: NUMBER: 19427 SUBJECT: FACT follow-up of the IceCube event 160427A DATE: 16/05/13 13:02:18 GMT FROM: Daniela Dorner at U of Wuerzburg <dorner@astro.uni-wuerzburg.de>

A. Biland (ETH Zurich) and D. Dorner (University of Wuerzburg, FAU Erlangen) report on behalf of the FACT collaboration:

On April 27th, 2016, the IceCube collaboration reported the detection of a high-energy neutrino (GCN #19363) with the updated position of RA=240.57d and DEC=+9.34d (J2000) and a position error of 0.6 degrees radius provided at 23:24:24 UTC on April 27th.

MAGIC

- 2 hrs obs
- 42 hr delay
- Ethres ~ 120 GeV

M. Santander et al., PoS(ICRC2017)618 FS et al., PoS(ICRC2017)653

Fabian Schüssler

Antares: ANT160130A

- 2017-01-30: high-energy neutrino seen by Antares
- automatic reaction of H.E.S.S.: time delay between neutrino interaction and start of gamma-ray data taking: 32 seconds

Fast Radio Bursts

strong, millisecond radio burst of possibly extragalactic origin
H.E.S.S. takes part in the SUPERB project @ Parkes
online searches for FRBs and other radio transients

FRB150418

H.E.S.

- detected 2015 April 18 04:29:07.056 UTC at SUPERB@Parkes
- ATCA: fading radio afterglow during ~6days

HESS+SUPERB, A&A 597 (2017), arXiv:1611.09209

FRB150418

H.E.S.S.

Declination (J2000) 80

-19°

-20°

FS et al., Gamma 2016

FRB150418

- detected 2015 April 18 04:29:07.056 UTC at SUPERB@Parkes
- ATCA: fading radio afterglow during ~6days
 - optical identification of galaxy at z=0.492
- H.E.S.S. observations the night after the burst
 - delay: ~14.5h

H.E.S

FRBs

- extension of the follow-up program to other radio observatories under discussion
 - CRAFT@ASKAP
 - Molonglo/UTMOST
 - ...
- repeating burst FRB121102
 - Iarge MWL campaign this week!
 - Arecibo heavily affected by hurricane Maria :-(
 - quite north for H.E.S.S. => large zenith angles => highest energies

Fabian Schüssler

Second physics run of Advanced LIGO/Virgo ended August 25

- H.E.S.S. part of the EM follow-up program since 2014
- rapid slewing, relatively large FoV
- dedicated algorithms to determine optimized scheduling

- Second physics run of Advanced LIGO/Virgo ended August 25
- H.E.S.S. part of the EM follow-up program since 2014
- rapid slewing, relatively large FoV
- dedicated algorithms to determine optimized scheduling
 - full 3D-correlation with galaxy catalog (GLADE) vs. 2D coverage of GW uncertainty region
 - running fully automated within the VoAlert system
 - decision on event-by-event basis
 - BBH: large distances, galaxy catalogs incomplete
 - BNS: nearby, complete catalogs

M. Seglar-Arroyo + FS, arXiv:1705.10138

- Second physics run of Advanced LIGO/Virgo ended August 25
- H.E.S.S. part of the EM follow-up program since 2014
- rapid slewing, relatively large FoV
- dedicated algorithms to determine optimized scheduling
 - full 3D-correlation with galaxy catalog (GLADE) vs. 2D coverage of GW uncertainty region
 - running fully automated within the VoAlert system
 - decision on event-by-event basis
 - BBH: large distances, galaxy catalogs incomplete
 - BNS: nearby, complete catalogs

M. Seglar-Arroyo + FS, arXiv:1705.10138

- Second physics run of Advanced LIGO/Virgo ended August 25
- H.E.S.S. part of the EM follow-up program since 2014
- rapid slewing, relatively large FoV
- dedicated algorithms to determine optimized scheduling
 - full 3D-correlation with galaxy catalog (GLADE) vs. 2D coverage of GW uncertainty region
 - running fully automated within the VoAlert system
 - decision on event-by-event basis
 - BBH: large distances, galaxy catalogs incomplete
 - BNS: nearby, complete catalogs

M. Seglar-Arroyo + FS, arXiv:1705.10138

Summary

- H.E.S.S. phase II: lower energy threshold and rapid response
- Galactic transients: mainly scheduled observations, ToO on microquasars
- Active Galactic Nuclei
 - multi-wavelength monitoring and ToOs
- Gamma-ray bursts
 - HESS-phase II: improved performance: reduced response time
 - highest priority observations, fully automatic response
- High-energy neutrinos
 - hotspots + HESE source searches
 - switched to ToO-only programs in 2016
- Fast Radio Bursts
 - decreased detection delays in preparation (e.g. ASKAP)
 - multi-wavelength monitoring campaigns for repeating burst (FRB 121102)
- Gravitational Waves
 - complex follow-up scheduling
 - THE hot topic at the moment, stay tuned ;-)

Antares/Swift ATEL: ANT150901

- 2015-09-01: Antares/TAToO alert to optical telescopes and Swift
- 2015-09-03: Swift detection of unknown, bright, variable X-ray source (ATEL 7987)
- 2015-09-03: H.E.S.S. follow-up
 - 1.5h of observations
 - Φ(E>320GeV, 99%CL) < 2.4 x 10⁻⁷ m⁻² s⁻¹

