Fermi-GBM transients

<u>Elisabetta Bissaldi*</u>

on behalf of the **Fermi-GBM Team**

*Politecnico & INFN Bari – elisabetta.bissaldi@ba.infn.it

The Fermi Gamma-Ray Burst Monitor

The Fermi Gamma-Ray Burst Monitor

Gamma-ray Space Telescope

GBM detectors: scintillating crystals attached to photomultipliers

• Ø: 12.7 cm, Thickness: 1.27 cm

E. Bissaldi

- Energy range: 8 keV 1 MeV
- Photoelectric absorption & Compton scattering

- Ø: 12.7 cm, Thickness: 12.7 cm
- Energy range: 250 keV 40 MeV
 - Compton scattering & Pair production

The Fermi Gamma-Ray Burst Monitor

- Designed to study Gamma-Ray Bursts
- Primary objectives of GBM:[Meegan+2009]
- Extend the energy range downward from the Fermi-LAT one
- 2. Compute **burst locations** onboard to allow re-orienting the spacecraft

A total of **120 different triggers** can be specified, each with a distinct threshold

- GBM triggers when 2 or more detectors exceed a preset but adjustable threshold specified in units of the standard deviation of the background rate.
 - Background rate: average rate accumulated over the previous 17 s, excluding the most recent 4 s
- Four energy ranges
 - 25 50 keV
 - o 50 300 keV
 - o 100 300 keV
 - >300 keV

Ten timescales

from 16 ms to 8.192 s
in steps of a factor of 2

E. Bissaldi

Amsterdam • September 27, 2017

Sermi Gamma-ray Space Telescope

Amsterdam • September 27, 2017

Dermi Gamma-ray Space Telescope

E. Bissaldi

Amsterdam • September 27, 2017

Gamma-ray

Robotic Burst Advocate - RoboBA

- Set of algorithms integrated into the Burst Alert Processor pipeline (operative since Feb. 2016 – Goldstein+)
 - Perform a background fit, make a signal identification and selection, and create a file that can be fed to the localization software.
 - Final localization notices within **10 minutes** of trigger time;
 - All algorithms and current configurations were tested and tweaked on GBM's first ~1700 GRBs

Fermi-GBM data and detector response

Data Type	Time Resolution	Energy Resolution
TRIGDAT	1024/256/64 ms	8 channels
CTIME	256/64 ms	8 channels
CSPEC	4096/1024 ms	128 channels
TTE	2 μs	128 channels

- TRIGDAT used primarily for localization & quick look
- CTIME: temporal analysis
- CSPEC: spectral analysis
- TTE: e.g. time-resolved spectral analysis
 - Initially available ~30 s pre- to ~300 s post-trigger
 - Continuous TTE (CTTE) implemented on November 26, 2012

Fermi-GBM data and detector response

- The response is a function of the source-spacecraft-Earth geometry
- Response rapidly decreases at a source-spacecraft angle >60 degrees
- Also need a separate atmospheric response for back-scatter

Gamma-ray Space Telescope

Fermi-GBM localization method

- Localization performed by comparing the relative observed rates from the GRB in each detector to the expected rates on a 1° grid
 - This requires an **assumption of the spectrum**, and the sky grid limits to a **statistical minimum uncertainty of 1 degree radius**
 - Distribution of systematic uncertainties is well represented (68% c.l.) by a 3.7° Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14° [Connaughton+2014]

E. Bissaldi

Fermi-GBM triggers

Quarterly trigger statistics over 9 years of the mission

Fermi-GBM GRBs

The **GBM GRB online catalog** is updated **within 1 hour**: → http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html

E. Bissaldi

Amsterdam • September 27, 2017

Fermi-GBM GRBs

2000 GBM GRBs as of February, 2017

266 Swift GRBs 121 LAT GRBs

13% seen by Swift 52% within Fermi LAT FOV 6% detected Swift BAT: 9 short GRBs per year BUT: arcmin localization facilitating follow-ups

E. Bissaldi

Amsterdam • September 27, 2017

2018 • GBM 8yr GRB trigger+spectral Catalogs (in preparation) GBM 8yr TGF Catalog GBM 6yr GRB trigger Catalog (3FGBM) GBM 5yr Magnetar Burst Catalog GBM 4yr GRB time-resolved spectral Catalog GBM 4yr GRB spectral Catalog GBM 4yr <mark>GRB trigger</mark> Catalog (2FGBM) GBM 3yr X-ray Burst Catalog

GBM 2yr GRB spectral Catalog

• GBM 2yr GRB trigger Catalog (1FGBM)

2008

<u>**3rd GRB trigger Catalog**</u> (6 years catalog)

<u>1st GRB Time-resolved Spectral Catalog (4 years catalog)</u>

•

Four empirical models fit to each • spectrum: PL, HECPL, Band, SBPL

➔ Preferred model (69%):

power-law model with a high-energy exponential cutoff

E. Bissaldi

1st X-ray Burst Catalog (3 years catalog)

- Systematic search for transients in the 12–25 keV energy band, with a time resolution of 8.2 s
- 1084 events, classified using spectral analysis, location, and spatial distributions

752 thermonuclear X-ray bursts 267 accretion flare events + X-ray pulses 65 untriggered GRBs

 tXRBs have peak blackbody temperatures (3.2 ± 0.3 keV) broadly consistent with photospheric radius expansion (PRE) bursts

Amsterdam • September 27, 2017

Fermi-GBM catalogs

<u>1st TGF catalog</u> (8 years catalog)

4144 TGFs, >80% untriggered found in dedicated offline searches, 800 TGFs/yr!

2nd online catalog (tables & tools):

0

E. Bissaldi

- **Terrestrial Electron Beams (TEBs):** 20 reliable, 10 possible 0
- Over 1500 TGFs have very low frequency (VLF) geo-locations good 0 to ~10 km

http://fermi.gsfc.nasa.gov/ssc/data/access/gbm/tgf/

1st Magnetar Burst Catalog (3 years catalog)

- Temporal & spectral analysis of 446 magnetar bursts
 - durations, spectral parameters for various models, fluences, and peak fluxes
- Small sample of magnetar-like bursts of unknown origin
- Combined durations and spectral parameters show similarities:
 - o T90 ~100 ms
 - \circ E_{peak}~40 keV

Fermi-GBM Earth Occultation monitoring

- Measure of the change in the count rate observed in the GBM detectors when the source enters or exits Earth occultation
 - Counts in each energy channel converted to fluxes using an assumed spectrum for each source
 - ~250 sources are monitored
 - X-ray binaries, AGNs, etc.
 - Crab Nebula Hard X-ray Variations

2006

Time (MJD)

1998

1.04

(stinu

2002

<u>nttps://gammaray.nsstc.nasa.gov/gbm/science/edrfn_occ.html</u>								
#	SOURCE NAME	RA (DEG)	DEC (DEG)	L (DEG)	B (DEG)	OBJECT TYPE		
1	SUN	0.000	0.000	96.337	-60.189	Star		
2	IGR_J00234+6141	5.740	61.685	119.561	-1.000	CV		
3	V709_CAS	7.204	59.289	120.042	-3.456	CV/DQ Her		
4	BD+6270	9.300	61.380	121.227	-1.445	Star		
5	FERMIJ0109+6134	17.445	61.558	125.115	-1.236	AGN		
6	SMCX-1	19.275	-73.433	300.412	-43.569	HMXB/NS		

2014

57000

2010

Fermi-GBM pulsar monitoring

- Daily blind searches for new pulsars and new outbursts
- Accreting Pulsars Monitoring Program using epoch folded searches includes 39 sources
 - 36 sources detected
 - o 8 persistent, 28 transient pulsars
- Online pulsar list

http://gammaray.nsstc.nasa.gov/gbm/science/pulsars.html

Catalog: http://gammaray.nsstc.nasa.gov/gbm/science/sgrb_search.html

Prob. per deg-

2.06 × 10⁻³

Untriggered GBM GRB candidates

- Since 2013: More short GRBs found by automatic on-ground search of CTTE data
 - \circ 4 energy ranges and 10 timescales (0.064 2.8 s)
 - Significant rate increases in 2 or more detectors
 - Removing of soft and long transients

2.752 s bins. T0 = MET 522537022.159999

E. Bissaldi

Ο

4.53×10-15

Untriggered GBM GRB candidates

Gamma-ray Space Telescope

- Since 2013: More short GRBs found by automatic on-ground search of CTTE data
 - \bigcirc
 - Ο
 - Ο

E. Bissaldi

4 energy ranges and 10 timescales (0.00) Significant rate increases in 2 or more detector. (Verification instruments thand long transients Ο

Location uncertainties are in the range of 10 to 40 deg

Additional

~100 GRBs/yr, mostly

Current time delays range from 0.5 to 6 hrs due to ground processing and data downlink

Untriggered GBM GRB candidates

Gamma-ray

Targeted searches to GW events

- Targeted search in CTTE data (Blackburn+2015, Goldstein+2017)
- Coherent search over GBM detectors
 - Looks for coherent signals in all detectors given an input time and optional skymap.
 - Calculate likelihood ratio of source and background.
 - Search +/- 30 seconds of input event time.
 - Sliding timescales from 0.256 to 8 s (capable down to 0.064 s) with a factor of 4 phase shift.
 - 3 source spectral templates using Band function: soft, normal, and hard.

Ideal Scenario	Bright GBM	Bright LIGO	GBM	LIGO		
GW150914 Scenario	Sub-threshold GBM	Bright LIGO		m		
Typical more distant short GRB	Bright GBM	Sub-threshold LIGO		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Both Sources Faint	Sub-threshold GBM	Sub-threshold LIGO		Wh-		
E. Bissaldi	Amsterdam • September 27, 2017					

Fermi-GBM Observations of GW Events

• GW150914-GBM, a 2.9 σ event consistent with a short GRB

- Not predicted by theoretical models, poorly localized but consistent
- No gamma-ray detections for LVT151012 or GW151226 not constraining
 - 32% and 17% of LIGO localization region blocked by Earth for GBM
 - Backgrounds were 18% and 3% higher in GBM
 - Distance for LVT151012 was 3x larger
- Need more events before we can say more!

Amsterdam • September 27, 2017

Follow-up of IceCube neutrino events

- Utilizes all search methods:
 - On-board triggers \bigcirc
 - **Untargeted** search within the hour \bigcirc
 - **Targeted** search using event time Ο
 - Earth occultation technique \bigcirc
- Good follow-up observation for IceCube-161103, upper limit published in GCN 20127.

- Other follow-up with limited GBM coverage:
 - IceCube-170321A (GCN 20932) \bigcirc
- Also can use these techniques to search for counterparts to Fast Radio Bursts

- Fermi-GBM continues to be very prolific in detecting GRBs, but it has shown excellent capabilities for non GRB science, too!
 - Monitoring of Galactic transients, Pulsars, Magnetars, etc.
 - o Catching TGFs
 - GBM is an ideal partner instrument in the search for EM signals in coincidence with GW detections
 - GCN notice of subthreshold GRB candidate events are now available
- Continued development of **offline data searches** for joint detection of astrophysical transients with neutrinos and gravitational waves.

Thank you!