

CTA Operations and Scheduling

Pep Colome, on behalf of the IEEC-CSIC team (colome@ieec.cat) Institute of Space Sciences

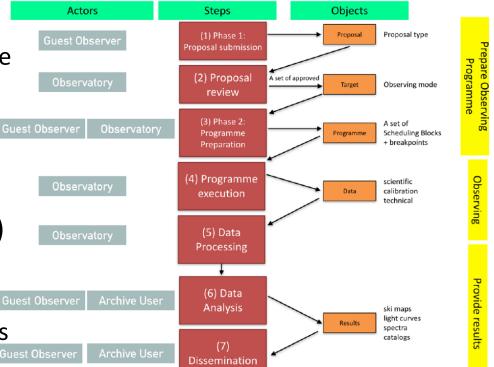
27th September, 2017

H2020-ASTERICS-CLEOPATRA

IEEC⁹ Planning & scheduling

- Goal: Solve constraint-satisfaction problem
- Technologies used: Metaheuristic Optimization (Genetic Algorithms, Multiobjective Evolutionary Algorithms) and Constraint-Based Reasoning (constraint propagation)
- Applicability
 - Mission planning optimization
 - Task (observations) sharing and cooperation between observatories
 - Embedded replanning for long distance or long autonomy operations

27th September, 2017


H2020-ASTERICS-CLEOPATRA

IEEC Scheduler for CTA

- CTA Scheduler (SCTA) prototype
- SCTA is a software designed to schedule astronomical observations based on Artificial Intelligence (Metaheuristic Optimization: GA, MOEA)
- Provide an automatic schedule of observations to each subarray: fulfill the conditions that must be satisfied (hard constraints); and highly optimize specific objectives (soft constraints)
- We can obtain a near-optimal solution (i.e., scheduling solution that highly optimizes the objectives and fulfills all the hard-constraints)
- SCTA allows Multi-facility scheduling and it is highly configurable: Different sites / Weather Conditions / Sub-Arrays / Cadence & Observation Strategies / Proprietary Time & Observation constrains
- SCTA works in 3 levels: Long-term, Mid-term and Short-term
- Current version implemented in C++

IEEC[®] Problem Conditions

- Operation tasks
 - Science, calibration, maintenance
- Observation types (incl.ToOs)
- Observation modes
 - Sub-arrays, compact
 - Convergent/divergent modes
- Observing time distribution (SB)
- Two sites (North/South)
 - 30-100 Telescopes/site
 - Independent & coordinated tasks

CTA observation modes

Convergent mode (very deep field)

CTA observation modes

Divergent mode

CTA observation modes

Monitoring 4 telescopes

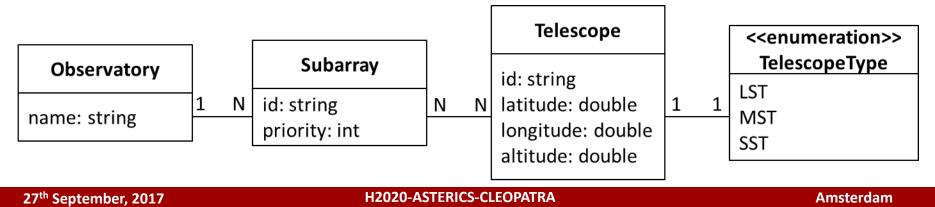
Monitoring 4 telescope Deep field ~1/2 of telescopes

 \bigcirc

Deep field $\sim 1/3$ of telescopes

Monitoring 1 telescope

Monitoring


4 Telescopes

Divergent & convergent mode in SUB-ARRAY configuration

IEEC[®] Problem Conditions

Observatory

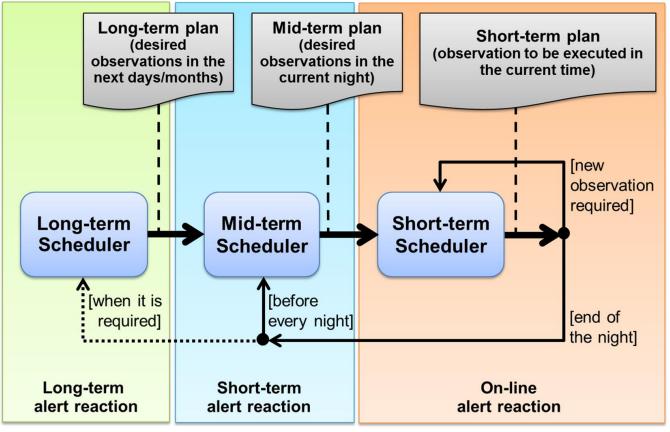
- Several subarrays
 - Each subarray contains a number of telescopes (TLCs) of same or different types
 - TLCs can be shared between subarrays (those subarrays will then exclude each other in simultaneous observation, i.e., Subarray1: All TLCs vs Subarray2: LSTs + MSTs)

IEEC[®] Observation Constraints

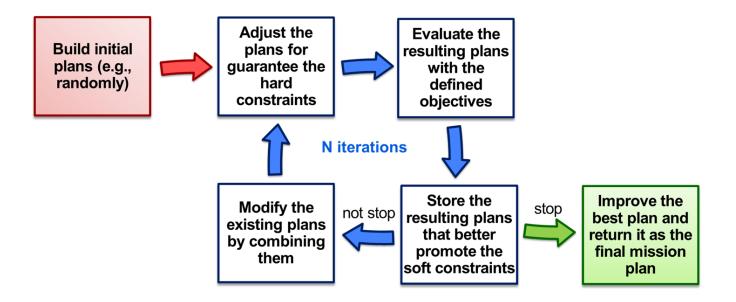
- Hard Constraints
 - Visibility constraints
 - Dark hours (global) \rightarrow solar horizon (-18°), Moon phase
 - Maximum Zenith Angle (target)
 - Resource constraints
 - Subarrays that share telescopes cannot observe at the same time
 - Each target observed by the assigned subarray
- Soft Constraints
 - Maximize observation time of each night
 - Maximize completion of proposals
 - Minimize slew time of each night (time blocks will increase due to consecutive observations)

IEEC[®] Optimization Strategies

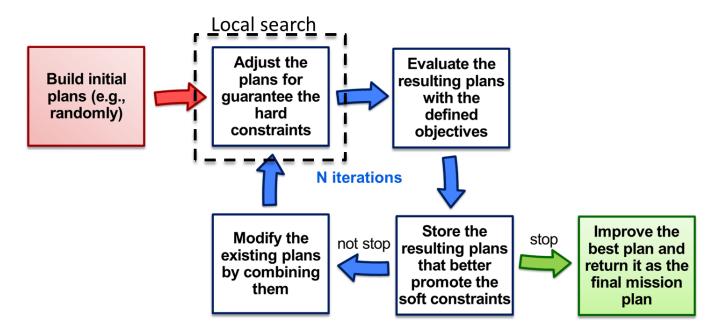
- Long-term and Mid-term schedulers
 - Genetic Algorithm (GA)
 - Single objective
 - o Maximize the observation time
 - Multiobjective Evolutionary Algorithm (MOEA)
 - Two objectives
 - Maximize the observation time or the proposals completion
 - o Minimize slew time

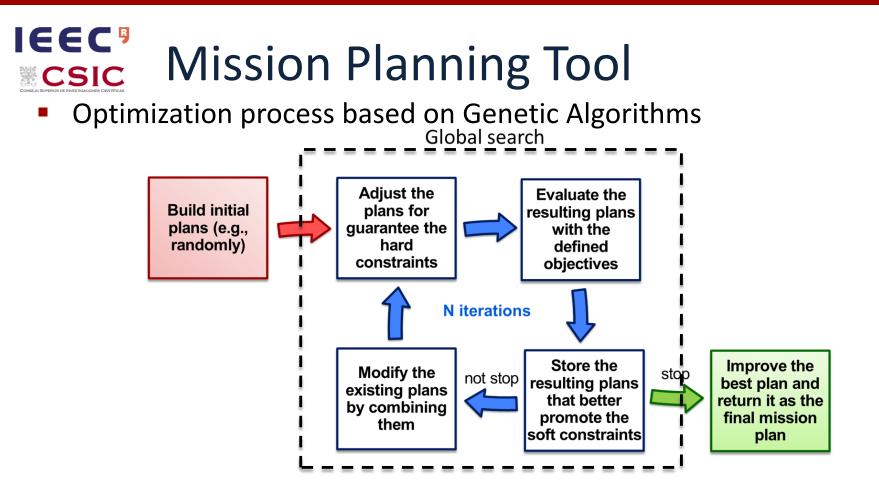

IEEC[®] Optimization Strategies

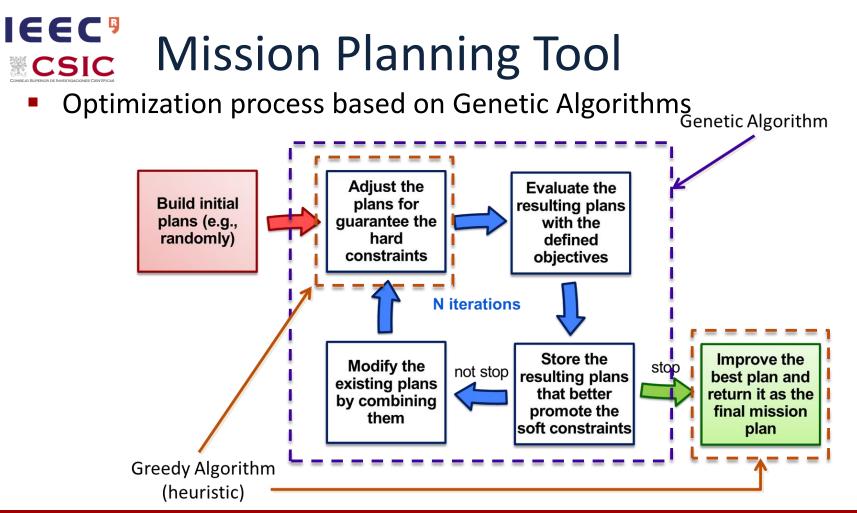
- Short-term scheduler
 - Features
 - Executed on-line (i.e., in real time)
 - Provide to array central control the next task (i.e., scheduling block) to be executed
 - React to unexpected and unpredictable situations
 - ToO, weather, telescope condition...
 - Respond in a few seconds
 - Strategy used
 - Adapt the plan previously computed by the mid-term scheduler
 - Without performing a global search (i.e., expensive optimization processes) with the aim of providing a quick response
 - Local search based on astronomical heuristics (i.e., decision rules)
 - Provide scheduling blocks with a reasonable trade-off between quality (i.e., suitability) and response time


Off-line Strategy (genetic algorithm)

On-line Strategy (astronomy-based heuristics)


IEEC[®] Mission Planning Tool


Optimization process based on Genetic Algorithms

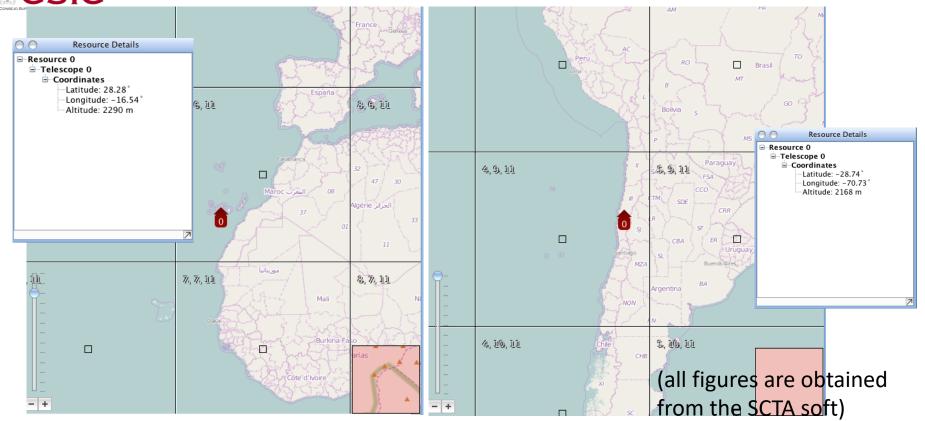


IEEC[®] Mission Planning Tool

Optimization process based on Genetic Algorithms

IEEC[®] Simulation parameters

- Parameters of each target
 - Coordinates
 - Observation time to be achieved
 - Maximum Zenith Angle
 - Subarray assigned
- Observation blocks
 - Duration can be configured for each target
 - Fixed pointing
- Slew time between observations of different targets
 - Overhead time of 2 minutes + 1 second per degree
- Mid-term Scheduler and Short-term Scheduler
 - Real-time response to bad weather conditions / ToO / etc.


IEEC[®] Simulation constraints

- Hard Constraints
 - Visibility constraints
 - Dark hours (global) \rightarrow solar horizon (-20°), Moon phase
 - Maximum Zenith Angle (target definition)
 - Resource constraints
 - Subarrays that share telescopes cannot observe at the same time
 - Each target observed by the assigned subarray
- Soft Constraints
 - Maximize proposal completeness
 - Maximize observation time of each night
 - Minimize slew time of each night (time blocks will increase due to consecutive observations)

IEEC[®] Simulation conditions

- Real weather conditions based on archival data using 2 years monitoring. Conditions to allow observations (configurable):
 - wind < 36 km/h</p>
 - humidity between 4% and 95%
 - cloudless
 - temperature between -10 and 25 C
- Observations with partial Moon light are not considered in the time computation.
- Time distribution
 - T_s = 2062.25 h
 - T_{Moonless} \sim 1676 h
 - $T_{UsableMoonless} \sim 1284$ h (after weather selection)
 - T_{Available} ~ 1220 h (CTA availability, according to reqs: 95% for science, 5% others)
- We simulated three programmes and surveys in 1 and 3 years full proprietary time.
- 1 subarrays and 3 types of telescopes (LST, MST, SST) Configurable!

IEEC⁹ **Two sites: Paranal in the South and La Palma in the North CSIC**

27th September, 2017

H2020-ASTERICS-CLEOPATRA

ICE)	KML Generation						00
Par	rameters Targets Observato	ory	CTA	A availability			
	Multifacility optimization strategy	only master midterm	•	CTA availability [%]	95	0)
	Bad weather conditions considered	yes	V	Maximum probability of clouds	0.05	0	
	Minimum humidity that allows to observe [%]	4	0	Maximum humidity that allows to observe [%]	95	0	
	Minimum humidity needed to restart observing [%]	4	0	Maximum humidity needed to restart observing [%]	95	0	
	Waiting time after humidity conditions allow observing [hh:mm:ss]	00:05:00	×	Maximum wind that allows to observe [m/s]	35	0	
	Waiting time after wind conditions allow observing [hh:mm:ss]	00:01:00	×	Minimum temperature that allows to observe [°]	-10	0	=
	Maximum temperature that allows to observe [°]	25	0	Waiting time after temperature conditions allow observing [hh:mm:ss]	00:01:00	×	
			Cancel Save	Execute Scheduler	eather configuration		

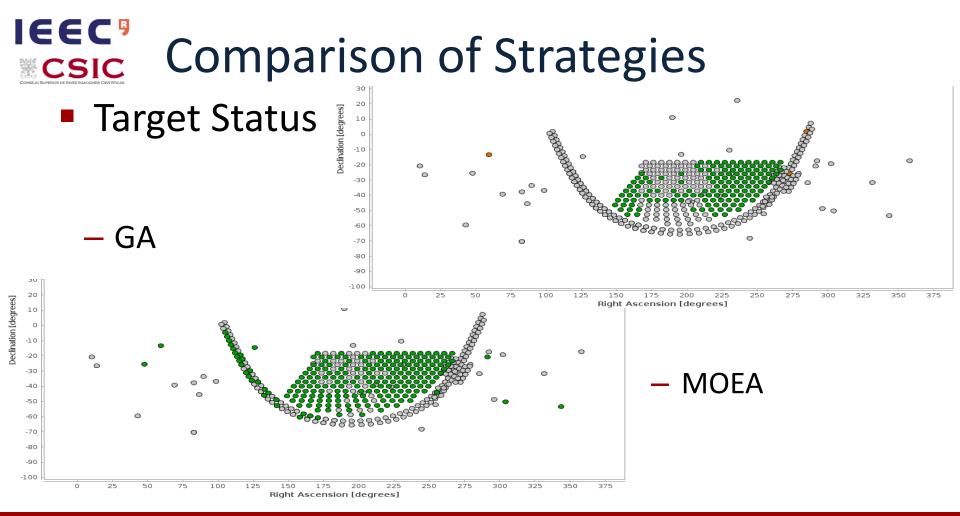
27th September, 2017

L

H2020-ASTERICS-CLEOPATRA

ICE XML Generation						
Parameters Targets Observatory						
Observatory Name: ESO	Telesco <u>pe Details</u>					
Subarrays	Mame	S	0			
0 (Main Array) 1						-
2	Longitude [°]	-70.73	0			
	Latitude [°]	-28.74	0			
	Altitude [m]	2168.0	0			
	Follow up	no	•	Field of view [degrees]	0	0
Manage subarrays	Solar horizon [°]	-20	0	Consider only dark time	yes	
Remove Duplicate Add New Telescopes	Weather database	CHILE_ATMOSCOPE				
L		0				
S		1				
		2				
	Subarrays Assigned					
	\mathbf{X}					
Managa talagaanaa						
Manage telescopes						_
Remove Duplicate Add New			Accept Changes	Telescope	e configuration	
					0	
		Canada Cana	Execute			
		Cancel Save	Scheduler			

IEEC[®] Simulation Configurations


Scenario

- CTA South: 464 targets (3692.11 hours)
- 1 year scheduling and 3 years scheduling
- 4 subarrays and 3 types of telescopes (LST, MST, SST)
 - Targets assigned to subarrays according their type

Target Type	#Targets	Subarrays Assigned
SURVEY 1	170	0 (LST + MST + SST)
SURVEY 2	231	1 (LST + MST)
SURVEY 3	20	2 (MST + SST)
SURVEY 4	5	2 (MST + SST)
SURVEY 5	38	3 (LST)

IEEC[®] Comparison of Strategies

- Results (according all subarrays)
 - Observation time metric
 - GA: 3609 observations (1168 hours)
 - MOEA: 4271 observations (1359.68 hours)
 - Slew time metric
 - GA: 8.32% of the working time* (104.7 hours)
 - MOEA: 2.62% of the working time* (34.26 hours)
- * Working time: slew time + observation time
- Execution time
 - Around 5 hours to simulate the 1 year scenario

27th September, 2017

H2020-ASTERICS-CLEOPATRA

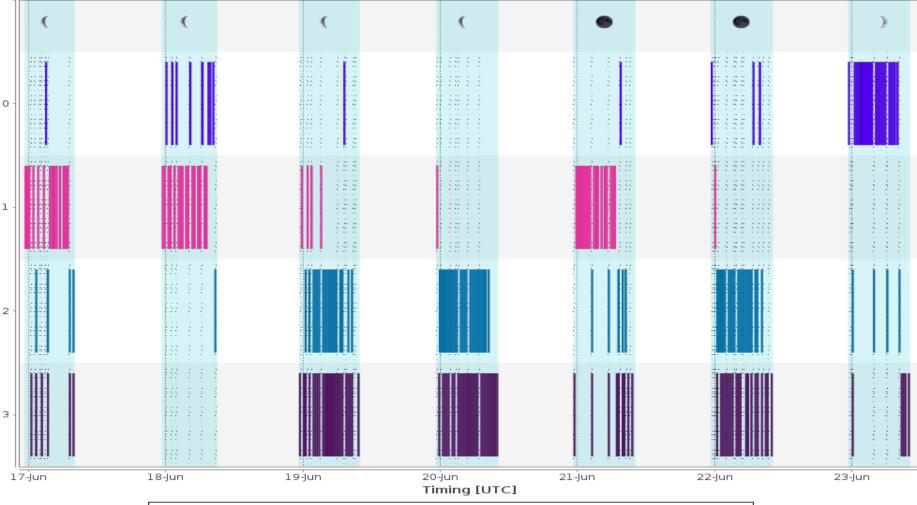
IEEC[®] Comparison of Strategies

Proposal point of view

 MOEA allows to complete more objects than GA because it performs more observations

Target Type	#Targets	GA #Planned (#Completed)	MOEA #Planned (#Completed)
SURVEY 1	170	167 (0)	170 (27)
SURVEY 2	231	231 (140)	231 (195)
SURVEY 3	20	20 (0)	20 (0)
SURVEY 4	5	5 (0)	5 (1)
SURVEY 5	38	37 (0)	38 (6)

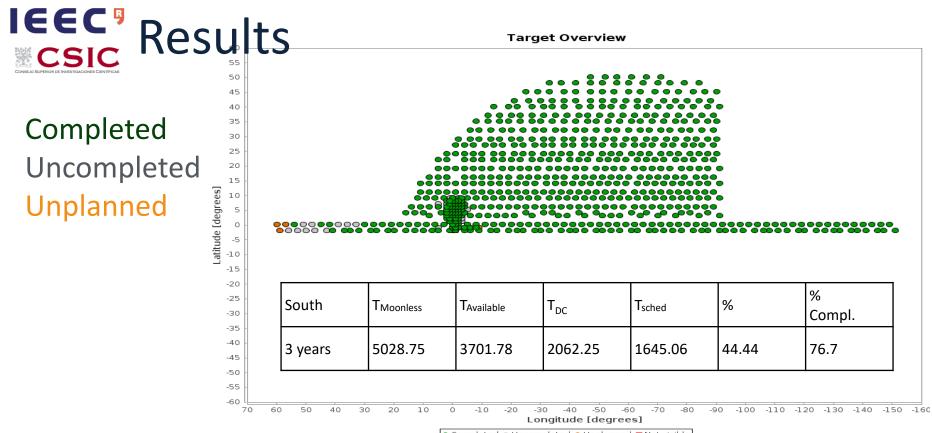

27th September, 2017


Optimization strategies

– GA	Subarrays	Required Time (h)	#Observations	Working Time (h)	Slew (% of WT)
	0 (LST + MST + SST)	1557.75	865	313.88	8.14
	1 (LST + MST)	200.01	602	220.28	8.90
	2 (MST + SST)	550.00	719	261.81	8.46
	3 (LST)	1384.35	1423	514.33	7.78
-					
	Subarrays	Required Time (h)	#Observations	Working Time (h)	Slew (% of WT)
– MOEA	Subarrays 0 (LST + MST + SST)	· · · · · · · · · · · · · · · · · · ·	#Observations 1108		
– MOEA		Time (h)		Time (h)	(% of WT)
– MOEA	0 (LST + MST + SST)	Time (h) 1557.75	1108	Time (h) 376.86	(% of WT) 2.00
– MOEA	0 (LST + MST + SST) 1 (LST + MST)	Time (h) 1557.75 200.01	1108 660	Time (h) 376.86 230.13	(% of WT) 2.00 4.40

Schedule by Resource

Schedule by Resource


Resource

🔳 Resource 0 📕 Resource 1 🔳 Resource 2 🔳 Resource 3 🔲 Observable period 🔅 Unfavourable weather

- 2	Target Type	#Targets	#Planned (#Completed)
3 years: 2993.71	SURVEY 1	170	170 (38)
hours available	SURVEY 2	231	231 (231)
	SURVEY 3	20	20 (20)
(≈1000	SURVEY 4	5	5 (5)
hours/year)	SURVEY 5	38	38 (31)
nouisyycury			

Subarrays	Required Time (h)	#Observations	Working Time (h)	Slew (% of WT)
0 (LST + MST + SST)	1557.75	2012	685.76	2.20
1 (LST + MST)	200.01	697	243.80	4.70
2 (MST + SST)	550.00	1653	559.65	1.55
3 (LST)	1384.35	2913	992.24	2.14
27 th September, 2017	H2020-ASTERIO	CS-CLEOPATRA		Amsterdam

Completed
Uncompleted
Unplanned
Not visible

27th September, 2017

H2020-ASTERICS-CLEOPATRA

Results

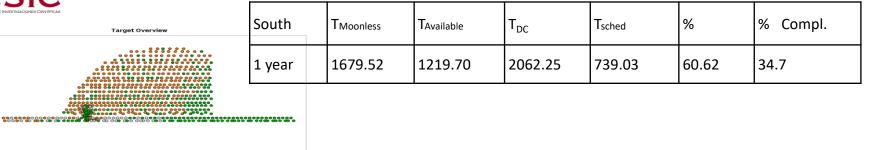
55 50

45

40

35

30


25

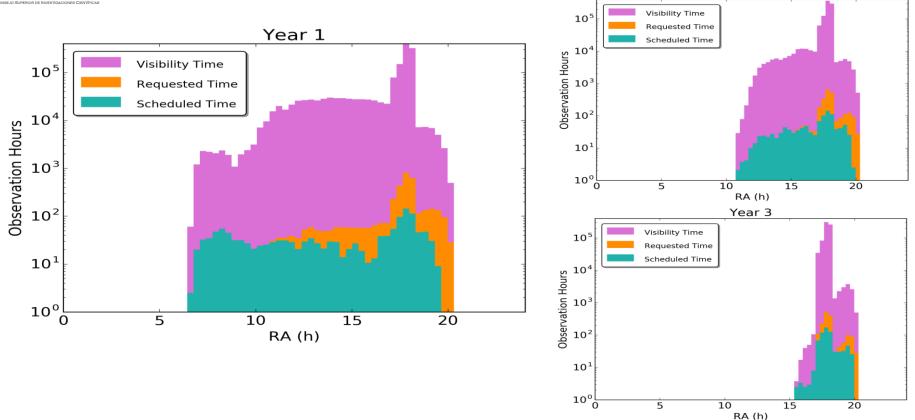
20

15

10

-5 -10 -10 -20 -25 -30 -35 -40 -45 -50

Target Overview	South	T _{Moonless}	TAvailable	T _{DC}	T_{sched}	%	% Compl.
	3 years	5028.75	3701.78	2062.25	1645.06	44.44	76.7

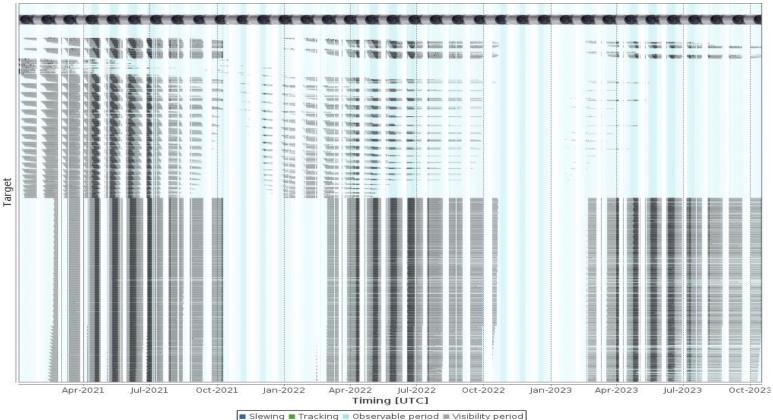


Completed
 Uncompleted
 Unplanned
 Not visible

27th September, 2017

H2020-ASTERICS-CLEOPATRA

Results - 3 years


27th September, 2017

H2020-ASTERICS-CLEOPATRA

Amsterdam

Year 2

Results - 3 years visibility

27th September, 2017

H2020-ASTERICS-CLEOPATRA