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KM3NeT

Selected Machine Learning tasks
Up/Down classification
Track/Shower classification
Selectfit
Particle identification

Deep Learning
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KM3NeT collaboration ¢ Q

Single collaboration, single technology, multi-site infrastructure
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KM3NeT science scope
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KM3NeT building block
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Hardware evolution

12 lines

ANTARES

KM3NeT

— Uniform angular coverage
— Directional information
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Learning
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Pattern recognition pipeline - £ F===
“Classical” pipeline for images:
Scene Image Image Object Features Results
aclanue;gi(tei;)n Preprocessing Segmentation e':((teraa:(Stri?)n Classification
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Machine Learning algorithms

Decision tree

Machine learning:
Algorithm uses experience to improve
(= minimize error function on examples)

Random Decision Forests
Boosted Decision Trees

L Feed forward neural network:
Artificial Neural Networks Hidden
Convolutional Neural Networks
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Up/Down classification

Example from ANTARES

Cosmic ray

Cosmic neutrino

Cosmic ray

~ 10° more atmospheric muons than neutrinos, all from above
— For several analyses: Up/Down = Signal/background classification



Up/Down classification

e Obvious solution: cuts on
quality parameters of
direction reconstruction

Cumulative number of events




Up/Down classification

e Obvious solution: cuts on
quality parameters of
direction reconstruction

e Result:
Loose most neutrinos!

Cumulative number of events




Up/Down classification

e Alternative: Random
Decision Forest using more
parameters (reconstruction,
specifically designed and
other algorithms)

e ~ 99% muon suppression

Cumulative number of events

e Not enough alone, but
allows less strict cuts
— more signal
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Track/Shower classification -y = Fe==
e Different signatures

requires different

reconstructions 00,05 —

S .

e Classes are: © 0,04 :;(;I;gl;roundv

e Tracks a) =

e Showers c) and d) g 0.031-
e 11 features and a BDT 0.027

0.01+ l
0 . |




Track/Shower classification - E Fe==
Different signatures
requires different
reconstructions 0005 —
= .

Classes are: © 0,04 ts);(;l;gl;roundv
e Tracks a) =
e Showers c) and d) g 0.031-
11 features and a BDT 0.021

0.01-
More efficient selection l

O ! |

than using quality cuts for
track and shower
reconstructions




Selectfit

Example from ANTARES

Multiple direction
reconstructions available

Combine them by RDF with
reconstruction results and
quality parameters

Improves reconstruction
accuracy/efficiency

Allows combining different
topologies

Efficiency
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Particle identification

Incorporate more
knowledge e.g. for flavour
composition

Distinguish

e Down-going tracks
Up-going tracks
Starting tracks
Cascade events
v, double bang

(d) starting track (VP-CC, Er.,=9] TeV, y=0.8)

Again: more efficient than
just stacking cuts

Optimizing features and
classification becomes
complex

(e) cascade (v,-NC, E, =1.06 PeV, y=0.6)
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Deep Learning
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e |In many architectures deep means many layers
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Deep Learning

e |In many architectures deep means many layers

e (Can abstract from simple input
— learns its own features (“Representation learning”)
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Deep Learning
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e |In many architectures deep means many layers

e Can abstract from simple input
— learns its own features (“Representation learning”)

Scene Image Image Object Features Results
"“‘””.‘g.e.' Preprocessing Segmentation Sk re Classification
acquisition extraction
Covers most of the pipeline Leaming

e automatically

e sometimes better than experts




Deep Learning
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e In many architectures deep means many layers

e Can abstract from simple input
— learns its own features (“Representation learning”)

Scene

Image

Image

Object

Features

Results

Image-
acquisition

Preprocessing

Covers most of the pipeline

e automatically

e sometimes better than experts

Segmentation

Feature
extraction




Deep Learning
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e |In many architectures deep means many layers

e Can abstract from simple input
— learns its own features (“Representation learning”)

Scene

Image

Image

Object

Features

Results

Image-
acquisition

Preprocessing

Covers most of the pipeline

e automatically

e sometimes better than experts
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Deep Learning

Deep Learning frameworks
optimized for 2D data

Neutrino telescopes produce 4D
data

KM3NeT produces 6D data

How to use Deep Learning?



/

”II

[

m
jinn
[T

£
1]
|
)
[

Deep Learning

Deep Learning frameworks
optimized for 2D data

Neutrino telescopes produce 4D
data

KM3NeT produces 6D data 5\5"3; reconstruction
How to use Deep Learning?
Use projections?

2D, 3D, 4D and 3.5D

Direct and transformed input
(non-cartesian, time residuals)
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Deep Learning

Testing CNNs, Residual nets, LSTMs with Keras, Tensorflow, CNTK
Training benefits from as much data as possible
Training takes hours or days

No manual feature design — can be trained for all previous tasks plus
new ones (regression of direction, bjorken y)

Best results so far with CNNs / Residual nets with direct 3.5D

Preliminary & where compared already: at least as good as previous
machine learning

Doesn'’t (yet) surpass algorithms that can incorporate a single, well
computable physics scenario (e.g. track direction)

Outlook: Investigate 6D data, Autoencoders, combination of CNN and
LSTM, separated convolutions



Summary
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e Neutrino astronomy often deals with high backgrounds
and low signal statistics

e Machine Learning is more efficient than plain cuts on variables

e Deep Learning allows to tackle tasks hardly possible before

e KM3NeT investigates these new techniques to enhance the sensitivity

achievable by various analyses
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Thank you for your attention
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