

Astronomy ESFRI & Research Infrastructure Cluster ASTERICS - 653477

Shallow and deep machine learning applications in KM3NeT Stefan Geißelsöder - ECAP, University of Erlangen

2nd ASTERICS-OBELICS Workshop

16-19 October 2017, Barcelona, Spain.

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

ASTERICS-OBELICS Workshop 2017 / Barcelona

KM3NeT

Selected Machine Learning tasks

Up/Down classification Track/Shower classification Selectfit Particle identification

Deep Learning

KM3NeT

NATURWISSENSCHAFTLICHE FAKULTÄT

KM3NeT collaboration

ORCA

Single collaboration, single technology, multi-site infrastructure

Astroparticle Research with Cosmics In the Abyss

+Nantes, Johannesburg, Marrakech, Tbilisi

KM3NeT science scope

KM3NeT building block

18 Oct. 2017 | Stefan Geißelsöder | 2nd ASTERICS OBELICS Workshop | Machine learning in KM3NeT

Detection principle

Hardware evolution

12 lines

3 Building Blocks (3*115 lines)

ANTARES

Uniform angular coverageDirectional information

Selected Machine Learning tasks

FRIEDRICH-ALEXANDER **ERLANGEN-NÜRNBERG**

NATURWISSENSCHAFTLICHE FAKULTÄT

"Classical" pipeline for images:

Machine Learning algorithms

Machine learning: Algorithm uses experience to improve (= minimize error function on examples)

- **Random Decision Forests**
- **Boosted Decision Trees**
- Artificial Neural Networks
- Convolutional Neural Networks

Example from ANTARES

 $\approx 10^6$ more atmospheric muons than neutrinos, all from above \rightarrow For several analyses: Up/Down = Signal/background classification

 Obvious solution: cuts on quality parameters of direction reconstruction

- Obvious solution: cuts on quality parameters of direction reconstruction
- Result: Loose most neutrinos!

- Alternative: Random Decision Forest using more parameters (reconstruction, specifically designed and other algorithms)
- pprox 99% muon suppression
- Not enough alone, but allows less strict cuts
 → more signal

Track/Shower classification

- Different signatures requires different reconstructions
- Classes are:
 - Tracks a)
 - Showers c) and d)
- 11 features and a BDT

Track/Shower classification

- Different signatures requires different reconstructions
- Classes are:
 - Tracks a)
 - Showers c) and d)
- 11 features and a BDT
- More efficient selection than using quality cuts for track and shower reconstructions

Selectfit

Example from ANTARES

- Multiple direction reconstructions available
- Combine them by RDF with reconstruction results and quality parameters
- Improves reconstruction accuracy/efficiency
- Allows combining different topologies

Particle identification

- Incorporate more knowledge e.g. for flavour composition
- Distinguish
 - Down-going tracks
 - Up-going tracks
 - Starting tracks
 - Cascade events
 - ν_{τ} double bang
- Again: more efficient than just stacking cuts
- Optimizing features and classification becomes complex

(d) starting track (ν_{μ} -CC, $E_{\nu_{\mu}}$ =91 TeV, y=0.8)

Deep Learning

NATURWISSENSCHAFTLICHE FAKULTÄT

• In many architectures deep means many layers

- In many architectures deep means many layers
- Can abstract from simple input
 - \rightarrow learns its own features ("Representation learning")

In many architectures deep means many layers

- Can abstract from simple input
 - \rightarrow learns its own features ("Representation learning")

• sometimes better than experts

Deep Learning

- In many architectures deep means many layers
- Can abstract from simple input
 - \rightarrow learns its own features ("Representation learning")

• sometimes better than experts

Deep Learning

In many architectures deep means many layers

• Can abstract from simple input

Deep Learning

 \rightarrow learns its own features ("Representation learning")

• sometimes better than experts

Deep Learning

- Deep Learning frameworks optimized for 2D data
- Neutrino telescopes produce 4D data
- KM3NeT produces 6D data
- How to use Deep Learning?

Deep Learning

- Deep Learning frameworks optimized for 2D data
- Neutrino telescopes produce 4D data
- KM3NeT produces 6D data
- How to use Deep Learning?
- Use projections?
- 2D, 3D, 4D and 3.5D
- Direct and transformed input (non-cartesian, time residuals)

X - V

- Testing CNNs, Residual nets, LSTMs with Keras, Tensorflow, CNTK
- Training benefits from as much data as possible
- Training takes hours or days
- No manual feature design → can be trained for all previous tasks plus new ones (regression of direction, bjorken y)
- Best results so far with CNNs / Residual nets with direct 3.5D
- Preliminary & where compared already: at least as good as previous machine learning
- Doesn't (yet) surpass algorithms that can incorporate a single, well computable physics scenario (e.g. track direction)
- Outlook: Investigate 6D data, Autoencoders, combination of CNN and LSTM, separated convolutions

Summary

- Neutrino astronomy often deals with high backgrounds and low signal statistics
- Machine Learning is more efficient than plain cuts on variables
- Deep Learning allows to tackle tasks hardly possible before
- KM3NeT investigates these new techniques to enhance the sensitivity achievable by various analyses

Thank you for your attention