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KM3NeT



g KM3NeT collaboration

Single collaboration, single technology, multi-site infrastructure
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g KM3NeT science scope
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g KM3NeT building block

(For comparison, not build within)
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g Detection principle
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g Hardware evolution

ANTARES KM3NeT
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Selected Machine Learning tasks



g Pattern recognition pipeline

“Classical” pipeline for images:
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g Machine Learning algorithms

Machine learning:
Algorithm uses experience to improve
(= minimize error function on examples)

• Random Decision Forests
• Boosted Decision Trees
• Artificial Neural Networks
• Convolutional Neural Networks
• ...

Decision tree
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Feed forward neural network:
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g Up/Down classification

Example from ANTARES

≈ 106 more atmospheric muons than neutrinos, all from above
→ For several analyses: Up/Down = Signal/background classification
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g Up/Down classification

• Obvious solution: cuts on
quality parameters of
direction reconstruction
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g Up/Down classification

• Obvious solution: cuts on
quality parameters of
direction reconstruction

• Result:
Loose most neutrinos!
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g Up/Down classification

• Alternative: Random
Decision Forest using more
parameters (reconstruction,
specifically designed and
other algorithms)

• ≈ 99% muon suppression

• Not enough alone, but
allows less strict cuts
→ more signal
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g Track/Shower classification

• Different signatures
requires different
reconstructions

• Classes are:
• Tracks a)
• Showers c) and d)

• 11 features and a BDT
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g Track/Shower classification

• Different signatures
requires different
reconstructions

• Classes are:
• Tracks a)
• Showers c) and d)

• 11 features and a BDT

• More efficient selection
than using quality cuts for
track and shower
reconstructions
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g Selectfit

Example from ANTARES

• Multiple direction
reconstructions available

• Combine them by RDF with
reconstruction results and
quality parameters

• Improves reconstruction
accuracy/efficiency

• Allows combining different
topologies  0
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g Particle identification

• Incorporate more
knowledge e.g. for flavour
composition

• Distinguish
• Down-going tracks
• Up-going tracks
• Starting tracks
• Cascade events
• ντ double bang

• Again: more efficient than
just stacking cuts

• Optimizing features and
classification becomes
complex
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Deep Learning



g Deep Learning

• In many architectures deep means many layers
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g Deep Learning

• Deep Learning frameworks
optimized for 2D data

• Neutrino telescopes produce 4D
data

• KM3NeT produces 6D data

• How to use Deep Learning?
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g Deep Learning

• Deep Learning frameworks
optimized for 2D data

• Neutrino telescopes produce 4D
data

• KM3NeT produces 6D data

• How to use Deep Learning?

• Use projections?

• 2D, 3D, 4D and 3.5D

• Direct and transformed input
(non-cartesian, time residuals)

x - y x - t
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g Deep Learning

• Testing CNNs, Residual nets, LSTMs with Keras, Tensorflow, CNTK

• Training benefits from as much data as possible

• Training takes hours or days

• No manual feature design→ can be trained for all previous tasks plus
new ones (regression of direction, bjorken y)

• Best results so far with CNNs / Residual nets with direct 3.5D

• Preliminary & where compared already: at least as good as previous
machine learning

• Doesn’t (yet) surpass algorithms that can incorporate a single, well
computable physics scenario (e.g. track direction)

• Outlook: Investigate 6D data, Autoencoders, combination of CNN and
LSTM, separated convolutions
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g Summary

• Neutrino astronomy often deals with high backgrounds
and low signal statistics

• Machine Learning is more efficient than plain cuts on variables

• Deep Learning allows to tackle tasks hardly possible before

• KM3NeT investigates these new techniques to enhance the sensitivity
achievable by various analyses

Thank you for your attention
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