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the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is 3.2 GB and 40 full moons
=⇒ 15 TB/night for 10 years

- Covers 18,000 square degrees (40% of the sky)
- Tens of billions of objects, each one observed ∼ 1000 times 2



what does it look like ?

HSC-SPP Data Release 1
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what does it look like ?

HSC

SDSS

z~0.19 z~0.30 z~0.37 z~0.44

Huang et al. (2017), arXiv:1707.01904
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the challenge for modern surveys

=⇒ Modern surveys will provide large volumes of high quality data

A Blessing

• Unprecedented statistical power
• Great potential for new discoveries

A Curse

• Existing methods are reaching their limits (computational cost,
accuracy) at every step of the science analysis

• Control of systematic uncertainties becomes paramount

=⇒ Dire need for novel data analysis techniques to fully realize the
potential of modern surveys
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Outline of this talk

1. Finding strong gravitational lenses with Deep Learning

Galaxy-Scale strong lensing

Finding strong lenses

Deep Learning for image classification

2. Deep Generative Models for weak lensing systematics

Weak Gravitational lensing

Deep Generative models of galaxy images
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Finding strong gravitational
lenses with Deep Learning



Galaxy-Galaxy Strong Lensing
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examples of strong lenses
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example of application: gravitational time delays

∆tij =
1+ zL
c

DL DS
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time delays of HE0435-1223 (Bonvin et al. 2017)
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time delays of HE0435-1223 (Bonvin et al. 2017)
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the problem: finding strong lenses
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automated lens searches: RingFinder (Gavazzi et al. 2014)

gri composite g− αi detected areas HST images

Visual inspection time required
∼ 30 person-minutes / deg2
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extrapolation to future surveys

CFHTLS DES LSST
100

101

102

103

104

105 number of strong lenses

Gavazzi et al. (2014), Collett (2015)

=⇒ LSST would require an estimated 104 man-hours.
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citizen science, the crowd-sourcing approach

=⇒ Classifying all of LSST would take a few weeks with a crowd of 106

volunteers

13



citizen science, the crowd-sourcing approach

=⇒ Classifying all of LSST would take a few weeks with a crowd of 106

volunteers

13



Deep Learning to the rescue
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in the news lately...

• Self-driving Uber takes the
road in Pittsburgh (Sept. 2016)

• CMU’s Libratus beats top
poker players (Jan. 2017)

• Google’s AlphaGo beats
world’s top Go player (May
2017)

=⇒ technological revolution brought about by the advancement of
deep learning
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how did this happen ?

Training deep networks is difficult
Until ∼2010, networks were limited to a few layers because of
vanishing gradients.

• Optimization tricks: Rectified Linear Units (ReLU), Dropout

• Better architectures: Convolutional Neural Networks (CNN)

• Powerful hardware: GPUs

• Huge amount of training data: Internet
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how did this happen ?

Training deep networks is difficult
Until ∼2010, networks were limited to a few layers because of
vanishing gradients.

• Optimization tricks: Rectified Linear Units (ReLU), Dropout

• Better architectures: Convolutional Neural Networks (CNN)

• Powerful hardware: GPUs

• Huge amount of training data: Internet

=⇒ State-of-the-art models outperform humans for image
detection/classification
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Convolutional Neural Network
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residual learning

Image credit: He et al. (2015)

• Learning the difference to the identity (He et al. 2015)

• Easier to initialize and to train in deep architectures (> 1000
layers)
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CMU DeepLens: deep residual learning for strong lens finding

model architecture

• Deep residual network (46 layers)
with pre-activated bottleneck residual units

• Training on simulated LSST lenses:

• Classification of 45x45 images in 350 µs
=⇒ 9 hours to classify a sample of 108 lens
candidates on a single GPU (Nvidia Titan X)
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performance on simulations

Highest probability lenses

True Positive Rate =
TP

TP+ FN

• TP: True Positives
• FN: False Negatives

False Positive Rate =
FP

FP+ TN

• FP: False Positives
• TN: True Negatives
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Euclid strong lens finding challenge

Ground based simulations Space based simulations

20



Euclid strong lens finding challenge

• CMU DeepLens wins over 24 other methods (including other
CNN methods) in space and ground challenge.

• Significantly outperforms human classification accuracy.
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outlook for LSST

• Automated lens finder faster and more reliable than human
volunteers

• Rethink the pipeline infrastructure if there is no need for visual
inspection

• Deep Learning model is only as good as its training data
=⇒ Need realistic simulations

Honorable mentions:

• Classification of time series using Deep Recurrent Neural
networks

• Estimation of galaxy redshifts from multi-band images with
residual networks
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Deep Generative Models for weak
lensing systematics



weak gravitational lensing

ε = εi + γ with < εi >= 0

=⇒ < ε >= γ

22



a very delicate measurement
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a very delicate measurement

Shape measurement biases

< e > = (1+m) γ + c

• Can be calibrated on image simulations
• How complex do the simulations need to be ?
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impact of galaxy morphology

Mandelbaum et al. (2013)

Mandelbaum et al. (2014)

The need for data-driven generative models
There can be two situations:

• Lack or inadequacy of physical model
• Extremely computationally expensive simulations

=⇒ Learn a model for the signal from the data itself

24
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the evolution of deep generative models

• Deep Belief Network (Hinton
et al. 2006)

• Variational AutoEncoder
(Kingma & Welling 2013)

• Generative Adversarial
Network (Radford et al. 2016)
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visual Turing test

Mock - PixelCNN Real - SDSS
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Conditional Variational AutoEncoder (CVAE)

x

y

qφ(z | x, y)

Inference
network

z ∼ p(z)

y

pθ(x | z, y)

Genera-
tor network

x′

Ravanbakhsh, Lanusse et al. (2017)

log(pθ(x | y)) ≥ −DKL(qφ(z | x, y)‖pθ(z | y))︸ ︷︷ ︸
Code regularisation

+Ez∼qφ(·|x,y)[log pθ(x | z, y)]︸ ︷︷ ︸
Reconstruction error
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modeling galaxy images from the Hubble Space Telescope

Training parameters

• Training set: postage stamps from COSMOS HST/ACS survey
• Conditional model: Half-light radius, magnitude, redshift
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morphological statistics

From top to bottom: Real COSMOS galaxies, CVAE samples, Parametric fits
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morphological statistics
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morphological statistics
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outlook for LSST

• Generative models are a data driven way of completing our
physical modeling

• Implementing these models inside the image simulation
software used to simulate the LSST survey

• Will allow for an extra degree of realism in LSST simulations
=⇒ Essential to the calibration of science pipeline

Honorable mention:

• Modeling galaxy properties in Nbody simulations using deep
generative networks on graphs
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conclusion

What can machine learning do for cosmology ?

• Model and analyze large volume of complex datasets

• Open new and powerful ways to look at the data

• Help control systematics in conventional analyses

Technical solutions

• Hardware: Nvidia Titan X GPUs
• Software: Theano/Lasagne, Tensorflow, CUDNN

Acknowledgment

• H2020-Astronomy ESFRI and Research Infrastructure Cluster
(Grant Agreement number: 653477).
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