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| the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is 3.2 GB and 40 full moons
= 15 TB/night for 10 years

- Covers 18,000 square degrees (40% of the sky)
- Tens of billions of objects, each one observed ~ 1000 times
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| what does it look like ?
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| the challenge for modern surveys

— Modern surveys will provide large volumes of high quality data
A Blessing

- Unprecedented statistical power
- Great potential for new discoveries

A Curse

- Existing methods are reaching their limits (computational cost,
accuracy) at every step of the science analysis

- Control of systematic uncertainties becomes paramount

— Dire need for novel data analysis techniques to fully realize the
potential of modern surveys



| Outline of this talk

1. Finding strong gravitational lenses with Deep Learning
Galaxy-Scale strong lensing
Finding strong lenses

Deep Learning for image classification

2. Deep Generative Models for weak lensing systematics
Weak Gravitational lensing

Deep Generative models of galaxy images



Finding strong gravitational
lenses with Deep Learning




| Galaxy-Galaxy Strong Lensing




| examples of strong lenses
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| example of application: gravitational time delays
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| time delays of HE0435-1223 (Bonvin et al. 2017)
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| time delays of HE0435-1223 (Bonvin et al. 2017)

Magnitude (relative)

-
©
=)

,_.
d
i

N
o
=)

N
=4
n

N
Iy
=)

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
HE 0435 — 1223 Light Curves
,/\a “*\Jl) A\ .
A /J , I
m{’*‘ k¢! - 2"‘«1 .’“\‘ ;,4:
B . "\,-@ W i - S ™ jp\ .
02 \“?,,\& M b ok T T Ty & \\' . 'I“li P i~
ey \ N gy OO S e My
) . e . & ~ ", B oy
IR e PRI NN A
k " in b ; 3
Ay - o A e 3/ .
D o N, v W :
+0.6 '(M b Wi H\ N
3 ] g
“"z‘ S S “‘v'- ..-’-' ™ K
» o




| time delays of HE0435-1223 (Bonvin et al. 2017)
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| the problem: finding strong lenses
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| the problem: finding strong lenses
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| automated lens searches: RingFinder (Gavazzi et al. 2014)
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| automated lens searches: RingFinder (Gavazzi et al. 2014)
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| extrapolation to future surveys
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| extrapolation to future surveys
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= LSST would require an estimated 10* man-hours.



citizen science, the crowd-sourcing approach
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Deep Learning to the rescue
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| in the news lately...

- Self-driving Uber takes the
road in Pittsburgh (Sept. 2016)

- CMU’s Libratus beats top
poker players (Jan. 2017)

- Google’s AlphaGo beats
world’s top Go player (May
2017)

— technological revolution brought about by the advancement of
deep learning
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vanishing gradients.
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| how did this happen ?

Training deep networks is difficult

Until ~2010, networks were limited to a few layers because of
vanishing gradients.

- Optimization tricks: Rectified Linear Units (ReLU), Dropout
- Better architectures: Convolutional Neural Networks (CNN)
- Powerful hardware: GPUs

- Huge amount of training data: Internet

— State-of-the-art models outperform humans for image
detection/classification



| Convolutional Neural Network
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| Convolutional Neural Network
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| Convolutional Neural Network
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| residual learning
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Image credit: He et al. (2015)
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| residual learning

X
A 4
weight layer
F(x) Jrelu x
weight layer identity

Image credit: He et al. (2015)

- Learning the difference to the identity (He et al. 2015)
- Easier to initialize and to train in deep architectures (> 1000
layers)



CMU Deeplens: deep residual learning for strong lens finding
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| CMU Deeplens: deep residual learning for strong lens finding
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- Deep residual network (46 layers)
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| CMU Deeplens: deep residual learning for strong lens finding
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model architecture

- Deep residual network (46 layers)

with pre-activated bottleneck residual units

- Training on simulated LSST lenses:

SIN =5 SIN =15 S/N = 20 S/N = 35
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- Classification of 45x45 images in 350 us

— 9 hours to classify a sample of 108 lens
candidates on a single GPU (Nvidia Titan X)
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| performance on simulations

Einstein radius > 1.43 arcsec
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| Euclid strong lens finding challenge
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| Euclid strong lens finding challenge

0.00 0.25 050 0.75 1.000.00 025 050 0.75 1.00
False Positive Rate

- CMU Deeplens wins over 24 other methods (including other
CNN methods) in space and ground challenge.

- Significantly outperforms human classification accuracy.

20
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volunteers
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| outlook for LSST

- Automated lens finder faster and more reliable than human
volunteers

- Rethink the pipeline infrastructure if there is no need for visual
inspection

- Deep Learning model is only as good as its training data
= Need realistic simulations

Honorable mentions:

- Classification of time series using Deep Recurrent Neural
networks

- Estimation of galaxy redshifts from multi-band images with
residual networks

21



Deep Generative Models for weak
lensing systematics




| weak gravitational lensing

DEFLECTION OF LIGHT RAYS CROSSING THE UNIVERSE, EMITTED BY DISTANT GALAXIES
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| a very delicate measurement
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Shape measurement biases
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| a very delicate measurement

\ Propagation through the Earth's

mosphere and telescope optics

(pixellated

Galaxies

(pixellated)

Shape measurement biases

<e> = (1+m)y+c

- Can be calibrated on image simulations
- How complex do the simulations need to be ?




| impact of galaxy morphology

Real galaxy Model

f 7 .

Real galaxy Model l % .
i i“ ‘

Mandelbaum et al. (2013)

2%



| impact of galaxy morphology
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| impact of galaxy morphology

ground constant
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| impact of galaxy morphology
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The need for data-driven generative models
There can be two situations:

- Lack or inadequacy of physical model
- Extremely computationally expensive simulations
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| impact of galaxy morphology

ground constant
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The need for data-driven generative models

There can be two situations:

- Lack or inadequacy of physical model

- Extremely computationally expensive simulations

— Learn a model for the signal from the data itself
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| the evolution of deep generative models
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| the evolution of deep generative models

- Deep Belief Network (Hinton
et al. 2006)

- Variational AutoEncoder
(Kingma & Welling 2013)

- Generative Adversarial
Network (Radford et al. 2016)
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| visual Turing test
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| visual Turing test
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| Conditional Variational AutoEncoder (CVAE)

po(x | z,y)
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Ravanbakhsh, Lanusse et al. (2017)
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| Conditional Variational AutoEncoder (CVAE)

4s(z [ X,y) po(x|z.y)
X z~p(2) X
- H— -
u = u =
y Inference y Genera-
network tor network

Ravanbakhsh, Lanusse et al. (2017)

log(pa(X | ¥)) = = Di(qs(z | X, ¥)lIpo(Z | V) + Ezngy -y llog po(X | ,¥)]

Code regularisation Reconstruction error
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| modeling galaxy images from the Hubble Space Telescope

Training parameters

- Training set: postage stamps from COSMOS HST/ACS survey
- Conditional model: Half-light radius, magnitude, redshift
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| modeling galaxy images from the Hubble Space Telescope

Training parameters

- Training set: postage stamps from COSMOS HST/ACS survey
- Conditional model: Half-light radius, magnitude, redshift

Hubble Space Telescope images Variational Autoencoder samples
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| morphological statistics
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| morphological statistics
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| outlook for LSST

- Generative models are a data driven way of completing our
physical modeling

- Implementing these models inside the image simulation
software used to simulate the LSST survey

- Will allow for an extra degree of realism in LSST simulations
— Essential to the calibration of science pipeline

Honorable mention:

- Modeling galaxy properties in Nbody simulations using deep
generative networks on graphs
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What can machine learning do for cosmology ?

- Model and analyze large volume of complex datasets
- Open new and powerful ways to look at the data
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Technical solutions
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