Applications of deep learning in wide-field cosmological surveys 2nd ASTERICS-OBELICS Workshop 16-19 October 2017, Barcelona, Spain

François Lanusse 18 October 2017

McWilliams Center for Cosmology Carnegie Mellon University

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

the Λ CDM view of the Universe

the Λ CDM view of the Universe

the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is 3.2 GB and 40 full moons
 ⇒ 15 TB/night for 10 years
- Covers 18,000 square degrees (40% of the sky)
- Tens of billions of objects, each one observed \sim 1000 times

HSC-SPP Data Release 1

HSC-SPP Data Release 1

HSC-SPP Data Release 1

Huang et al. (2017), arXiv:1707.01904

 \Longrightarrow Modern surveys will provide large volumes of high quality data

 \Longrightarrow Modern surveys will provide large volumes of high quality data

A Blessing

- Unprecedented statistical power
- Great potential for new discoveries

 \Longrightarrow Modern surveys will provide large volumes of high quality data

A Blessing

- Unprecedented statistical power
- Great potential for new discoveries

A Curse

- Existing methods are reaching their limits (computational cost, accuracy) at every step of the science analysis
- Control of systematic uncertainties becomes paramount

 \Longrightarrow Modern surveys will provide large volumes of high quality data

A Blessing

- Unprecedented statistical power
- Great potential for new discoveries

A Curse

- Existing methods are reaching their limits (computational cost, accuracy) at every step of the science analysis
- · Control of systematic uncertainties becomes paramount

 \Longrightarrow Dire need for novel data analysis techniques to fully realize the potential of modern surveys

Outline of this talk

- Finding strong gravitational lenses with Deep Learning Galaxy-Scale strong lensing Finding strong lenses Deep Learning for image classification
- Deep Generative Models for weak lensing systematics
 Weak Gravitational lensing
 Deep Generative models of galaxy images

Finding strong gravitational lenses with Deep Learning

examples of strong lenses

SLACS: The Sloan Lens ACS Survey A. Baltan (U. Hawai'i II/A), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (MP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

example of application: gravitational time delays

example of application: gravitational time delays

$$\Delta t_{ij} = \frac{1+z_L}{c} \underbrace{\frac{D_L D_S}{D_{LS}}}_{\propto H_0^{-1}} \left[\frac{(\boldsymbol{\theta}_i - \boldsymbol{\beta})^2}{2} - \psi(\boldsymbol{\theta}_i) + \frac{(\boldsymbol{\theta}_j - \boldsymbol{\beta})^2}{2} + \psi(\boldsymbol{\theta}_j) \right]$$

time delays of HE0435-1223 (Bonvin et al. 2017)

time delays of HE0435-1223 (Bonvin et al. 2017)

time delays of HE0435-1223 (Bonvin et al. 2017)

the problem: finding strong lenses

the problem: finding strong lenses

automated lens searches: RingFinder (Gavazzi et al. 2014)

gri composite $g - \alpha i$ detected areas HST images

automated lens searches: RingFinder (Gavazzi et al. 2014)

gri composite $g - \alpha i$ detected areasHST imagesVisual inspection time required~ 30 person-minutes / deg2

extrapolation to future surveys

Gavazzi et al. (2014), Collett (2015)

extrapolation to future surveys

Gavazzi et al. (2014), Collett (2015)

extrapolation to future surveys

Gavazzi et al. (2014), Collett (2015)

 \implies LSST would require an estimated 10⁴ man-hours.

citizen science, the crowd-sourcing approach

citizen science, the crowd-sourcing approach

 \implies Classifying all of LSST would take a few weeks with a crowd of 10^6 volunteers

Deep Learning to the rescue

in the news lately...

• Self-driving Uber takes the road in Pittsburgh (Sept. 2016)

in the news lately...

- Self-driving Uber takes the road in Pittsburgh (Sept. 2016)
- CMU's Libratus beats top poker players (Jan. 2017)

in the news lately...

- Self-driving Uber takes the road in Pittsburgh (Sept. 2016)
- CMU's Libratus beats top poker players (Jan. 2017)
- Google's AlphaGo beats world's top Go player (May 2017)
in the news lately...

- Self-driving Uber takes the road in Pittsburgh (Sept. 2016)
- CMU's Libratus beats top poker players (Jan. 2017)
- Google's AlphaGo beats world's top Go player (May 2017)

in the news lately...

- Self-driving Uber takes the road in Pittsburgh (Sept. 2016)
- CMU's Libratus beats top poker players (Jan. 2017)
- Google's AlphaGo beats world's top Go player (May 2017)

 \Longrightarrow technological revolution brought about by the advancement of deep learning

Training deep networks is difficult

Training deep networks is difficult

Training deep networks is difficult

Training deep networks is difficult

Training deep networks is difficult

Until \sim 2010, networks were limited to a few layers because of vanishing gradients.

• Optimization tricks: Rectified Linear Units (ReLU), Dropout

Training deep networks is difficult

- Optimization tricks: Rectified Linear Units (ReLU), Dropout
- Better architectures: Convolutional Neural Networks (CNN)

Training deep networks is difficult

- Optimization tricks: Rectified Linear Units (ReLU), Dropout
- Better architectures: Convolutional Neural Networks (CNN)
- Powerful hardware: GPUs

Training deep networks is difficult

- Optimization tricks: Rectified Linear Units (ReLU), Dropout
- Better architectures: Convolutional Neural Networks (CNN)
- Powerful hardware: GPUs
- Huge amount of training data: Internet

Training deep networks is difficult

Until \sim 2010, networks were limited to a few layers because of vanishing gradients.

- Optimization tricks: Rectified Linear Units (ReLU), Dropout
- Better architectures: Convolutional Neural Networks (CNN)
- Powerful hardware: GPUs
- Huge amount of training data: Internet

 \Longrightarrow State-of-the-art models outperform humans for image detection/classification

Convolutional Neural Network

Convolutional Neural Network

Convolutional Neural Network

Conv 1: Edge+Blob

Conv 3: Texture

Conv 5: Object Parts

Fc8: Object Classes

16

residual learning

Image credit: He et al. (2015)

• Learning the difference to the identity (He et al. 2015)

residual learning

Image credit: He et al. (2015)

- Learning the difference to the identity (He et al. 2015)
- Easier to initialize and to train in deep architectures (> 1000 layers)

CMU DeepLens: deep residual learning for strong lens finding

• Deep residual network (46 layers) with pre-activated bottleneck residual units

model architecture

CMU DeepLens: deep residual learning for strong lens finding

- Deep residual network (46 layers) with pre-activated bottleneck residual units
- Training on simulated LSST lenses: SIN = 5 SIN = 15 SIN = 20 SIN = 35 SIN = 35

model architecture

CMU DeepLens: deep residual learning for strong lens finding

- Deep residual network (46 layers) with pre-activated bottleneck residual units
- Training on simulated LSST lenses: S/N = 5
 S/N = 15
 S/N = 20
 S/N = 35
 S/N = 35
 S/N = 36
 S
- Classification of 45x45 images in 350 μ s \implies 9 hours to classify a sample of 10⁸ lens candidates on a single GPU (Nvidia Titan X)

model architecture

performance on simulations

Highest probability lenses

True Positive Rate =
$$\frac{TP}{TP + FN}$$

- TP: True Positives
- FN: False Negatives

- FP: False Positives
- TN: True Negatives

Euclid strong lens finding challenge

Ground based simulations

Space based simulations

Euclid strong lens finding challenge

- CMU DeepLens wins over 24 other methods (including other CNN methods) in space and ground challenge.
- Significantly outperforms human classification accuracy.

• Automated lens finder faster and more reliable than human volunteers

- Automated lens finder faster and more reliable than human volunteers
- Rethink the pipeline infrastructure if there is no need for visual inspection

- Automated lens finder faster and more reliable than human volunteers
- Rethink the pipeline infrastructure if there is no need for visual inspection
- Deep Learning model is only as good as its training data \implies Need realistic simulations

- Automated lens finder faster and more reliable than human volunteers
- Rethink the pipeline infrastructure if there is no need for visual inspection
- Deep Learning model is only as good as its training data \implies Need realistic simulations

Honorable mentions:

- Classification of time series using Deep Recurrent Neural networks
- Estimation of galaxy redshifts from multi-band images with residual networks

Deep Generative Models for weak lensing systematics

weak gravitational lensing

Shape measurement biases

 $\langle e \rangle = (1+m) \gamma + c$

Shape measurement biases

$$< e > = (1+m) \gamma + c$$

• Can be calibrated on image simulations

Shape measurement biases

$$< e > = (1+m) \gamma + c$$

- Can be calibrated on image simulations
- How complex do the simulations need to be ?

Real galaxy

Mandelbaum et al. (2013)

Mandelbaum et al. (2014)

Mandelbaum et al. (2014)

The need for data-driven generative models

There can be two situations:

• Lack or inadequacy of physical model

The need for data-driven generative models

There can be two situations:

- Lack or inadequacy of physical model
- · Extremely computationally expensive simulations
impact of galaxy morphology

The need for data-driven generative models

There can be two situations:

- Lack or inadequacy of physical model
- · Extremely computationally expensive simulations
- \Longrightarrow Learn a model for the signal from the data itself

the evolution of deep generative models

- Deep Belief Network (Hinton et al. 2006)
- D ļ J Ч ł Ь å G в o) Ľ e Ý q

the evolution of deep generative models

- Deep Belief Network (Hinton et al. 2006)
- Variational AutoEncoder (Kingma & Welling 2013)

the evolution of deep generative models

- Deep Belief Network (Hinton et al. 2006)
- Variational AutoEncoder (Kingma & Welling 2013)
- Generative Adversarial Network (Radford et al. 2016)

visual Turing test

visual Turing test

Mock - PixelCNN

Real - SDSS

Conditional Variational AutoEncoder (CVAE)

Ravanbakhsh, Lanusse et al. (2017)

Conditional Variational AutoEncoder (CVAE)

Ravanbakhsh, Lanusse et al. (2017)

$$\log(p_{\theta}(x \mid y)) \geq -\underbrace{\mathbb{D}_{\mathsf{KL}}(q_{\phi}(z \mid x, y) \| p_{\theta}(z \mid y))}_{\text{Code regularisation}} + \underbrace{\mathbb{E}_{z \sim q_{\phi}(\cdot \mid x, y)}[\log p_{\theta}(x \mid z, y)]}_{\text{Reconstruction error}}$$

modeling galaxy images from the Hubble Space Telescope

Training parameters

- Training set: postage stamps from COSMOS HST/ACS survey
- Conditional model: Half-light radius, magnitude, redshift

modeling galaxy images from the Hubble Space Telescope

Training parameters

- Training set: postage stamps from COSMOS HST/ACS survey
- Conditional model: Half-light radius, magnitude, redshift

morphological statistics

From top to bottom: Real COSMOS galaxies, CVAE samples, Parametric fits

morphological statistics

morphological statistics

• Generative models are a data driven way of completing our physical modeling

- Generative models are a data driven way of completing our physical modeling
- Implementing these models inside the image simulation software used to simulate the LSST survey

- Generative models are a data driven way of completing our physical modeling
- Implementing these models inside the image simulation software used to simulate the LSST survey
- Will allow for an extra degree of realism in LSST simulations \implies Essential to the calibration of science pipeline

- Generative models are a data driven way of completing our physical modeling
- Implementing these models inside the image simulation software used to simulate the LSST survey
- Will allow for an extra degree of realism in LSST simulations
 ⇒ Essential to the calibration of science pipeline

Honorable mention:

• Modeling galaxy properties in Nbody simulations using deep generative networks on graphs

What can machine learning do for cosmology ?

• Model and analyze large volume of complex datasets

What can machine learning do for cosmology?

- Model and analyze large volume of complex datasets
- Open new and powerful ways to look at the data

What can machine learning do for cosmology?

- Model and analyze large volume of complex datasets
- \cdot Open new and powerful ways to look at the data
- Help control systematics in conventional analyses

What can machine learning do for cosmology?

- Model and analyze large volume of complex datasets
- Open new and powerful ways to look at the data
- Help control systematics in conventional analyses

Technical solutions

- Hardware: Nvidia Titan X GPUs
- Software: Theano/Lasagne, Tensorflow, CUDNN

What can machine learning do for cosmology?

- Model and analyze large volume of complex datasets
- Open new and powerful ways to look at the data
- Help control systematics in conventional analyses

Technical solutions

- Hardware: Nvidia Titan X GPUs
- Software: Theano/Lasagne, Tensorflow, CUDNN

Acknowledgment

• H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).