

Large Synoptic Survey Telescope Qserv integration into science pipeline -

Nicolas Chotard, Dominique Boutigny, Sabine Elles

CNRS / IN2P3 / ASTERICS

2nd ASTERICS-OBELICS Workshop Oct. 16Th, 2017, Barcelona, Spain

The Large Synoptic Survey Telescope is an instrument designed to make high precision images of the whole accessible sky in 4-D (x, y, z, t)

A 10 year time-lapse movie of the southern sky

Time domain science

- Novae Supernovae GRBs
- Source characterization
- Instantaneous discovery

Moving sources

- Asteroids and comets
- Proper motions of stars

Mapping the Milky Way

- Tidal stream
- Galactic structure
- Complementary to GAIA

Dark energy and dark matter

- Gravitational lensing (strong and weak)
- Evolution of large scale galactic structures
- Trace the nature of dark energy

Where and how?

Cerro Pachón – 2700m

Average seeing: 0.67 arcsec

Foca plan Foca plan (July Tank-house ad utilities Castar (July Tank-house ad utilities (July Tank-house (July Tank-house ad utilities (July Tank-house (July Tank-house (July Tank-house (July Tank-house) (July Tank

Telescope

- 8.4 m (6.7m effecif)
- Fully corrected (sphericity, coma, astigmatisme)
- A 350 tons mobile structure

Camera

- 3.2 billion pixels @ 0.2 arcsecond / pixel
- 21 rafts
- 9 CCD / raft

Data centers

- ~15 TB of raw data / night
- Final image collection : 0.5 Exabytes
- Final database size (DR11) = 15 PB

- Summit (Pachón) to Base (La Serena) = 2 x 100 Gbps
- Base(La Serena) to Archive (NCSA) = 2 x 40 Gbps

Challenge: design an open source SQL database system able to store trillions of objects while keeping a reasonable access time

Qserv: developed at SLAC + IPAC Design optimized for astronomical queries

Massively parallel – distributed – fault tolerant **relational database**

- Test Qserv on real data processed through the LSST software stack
 - Different queries (magnitudes, position, etc.)
 - Different configuration of the DB (number of stripes and chunks)
 - Different catalogs (sources, coadds)
 - \succ Test its capabilities and performances
- Qserv integration into science analysis pipelines
 - Automatic inclusion of LSST stack-processed data into a Qserv instance
 - Direct queries in this database from a science pipeline
 - Construction/test of python tools to query the data
- Test case: Clusters pipeline
 - Galaxy cluster mass estimate
 - LSST stack data used in all steps of the analysis
 - CFHT data already processed
 - 5 filters, several areas of the sky

- Short term
 - Set-up of a test-case Qserv instance @ CC-IN2P3 (OpenStack)
 - Incremental load of data (prototype already developed)
 - Reprocess and load more data (telescope, filters, sky area, etc)
- Longer term
 - Permanent Qserv instance @ CC-IN2P3 dedicated to analysis
 - Automatic and incremental ingestion of new LSST stackprocessed data in the CC-IN2P3 Qserv instance
 - Python tools to query these data
- Implementation of these tools in DESC science pipelines
- Qserv tests and validation on real science cases in LSST/DESC

- LSST softwares (stack + Qserv) already available for users
 - All LSST softwares are open source and available on github
 - But still under developments
 - A huge work of validation has to be done
 - A connection between those tools is also needed
- The work undertaken here is crucial to
 - Understand the limitation of these softwares
 - Make sure that we can improve them while it is still time
 - See if we can already use them in different context (telescopes, data-sets, experiments)
 - Use them for science analyses before LSST starts taking data

Aknowledgement

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477)

Data base schema

- Tool to create/update the Qserv DB based on the data-set produced by the LSST soft-wares
 - DB structure was defined in collaboration with the stack developers/physicists
 - Use as far as possible the DB access tools provided by Qserv developers (collaboration with LPC-Clermont)
- Guidelines
 - Asynchronous process that allows parallelisation
 - Data integrity guaranteed by MySQL
 - Main challenge: dealing properly with the error-recovery
- Status
 - Prototype developed and tested locally with a small data-set
 - Migration to the Qserv platform available at CC IN2P3 machines is ongoing