
Python wrapper performances
Jean Jacquemier, Pierre Aubert, Thomas Vuillaume, Gilles Maurin

This project has received funding from the European Union’s Horizon 2020 research and innovation programme 
under grant agreement No 653477



HPC techniques for big data 
processing

• CTA telescopes ->TeraByte of data/night 

-> high-performance computing techniques

– Data format generator 
– CPU Data prefectching, Vectorization, Contiguous data, Cache 

Friendly.

– HPC algorithms on Intel CPU
• Vectorization (SIMD)
• Loop optimization

2



Python for astroparticle physics

• The software langage of astroparticle physics.
– Mainly use for analysis.

• CTA pipeline in Python 
– performances is still challenging

• C++ HPC algorithms and data format to Python library.

3



ctapipe framework approach

4



Python wrapper performances

• We studied different ways on wrap C++ code to 
Python.
– ctypes, swig, pybind11, Python/C_API

• Feedback about experiences 

5



Data format Performances

• Performance depends on wrapper technics.

- Pure Python

– library generated by Swig 

– Python/C API 

6



Data format performances

– Object attribute getter and setter
• Python/C API 75 times faster than Swig generated code

– Load / Save ( binary file ) in memory
• Python/C API equivalent to C++ 
• Pure Python 5 times slower Read
• Pure Python 20 times slower Write

7



Mathematical kernel library

• Numpy 
– Python package for scientific computing.

–  common mathematical routines in pre-compiled C/C++ 
language.

• plibs_8 
– Python 3 math kernel library for Intel. 

– Few mathematical routines in pre-compiled optimized C/C++ 
language.

8



Array sum

9



Array sum Wrapper thechnics

10



Array addition

array instantiation cost

11



Python Aliasing

%import module
%for i in range(loop):

 module.sum(data)

%import module
%module_sum = module.sum
%for i in range(loop):

 module_sum(data)

12



Python Aliasing

13



HPC Algorithm Hillas

• It parameterizes particle in a cosmic ray air 
shower.

• vector reduction +  momenta (1,2,3,4)

14



Hillas

15



 Best practices for python 
developers

Use compiled code when program contains some high CPU usage 
computation.

Numpy effectiveness could be improved by manually allocating array 
memory.

Most of Numpy performances could be outperformed by optimized 
compiled code.

Avoiding memory allocation drastically reduces the amount of CPU time. 
16



 Best practices for python 
developers

CPU consumption is dominated by Python function call. 

It is recommended to use alias in hot spots.

 Python and Numpy C API is much more faster than wr cython or 
automatic tool like swig.

17



Conclusion

• Good practices for Python programming language. 

• These good practices can substantially improve 
performances.

• Importance compiled libraries for intensive computing. 

•  Top-Down approach is viable.

18


