
Task-based distributed processing
for radio-interferometric imaging
with CASA
BOJAN NIKOLIC 2nd ASTERICS-OBELICS Workshop

16-19 October 2017, Barcelona, Spain.

H2020-Astronomy ESFRI and Research Infrastructure Cluster

(Grant Agreement number: 653477).

Motivation

The “embarrassing” parallelism in
Radio Astronomy
Typically each observation can be processed completely independently of all others

Each observation is typically an hour of time

8700 hours in a year => almost 10000 way parallelism if we are patient

That is enough to scale the SKA data
reduction to a single node!

But:
• Sometimes can’t wait! Calibration, fast transients
• Very large storage requirements – about 1MW of spinning drives

Traditional approaches
Use a single, high specification, computer and be patient
Ideally with an automated pipeline script,

But sometimes :

Objectives for task based
parallelisation

Time-to-solution

• Non observation-parallel
use casses

• Free-up expensive fast
storage space as quickly
as possible

• Feedback on quality of
observations quicker

• Scientific results sooner

• Need fewer People

Distributed memory

• Avoid the expense and
scaling limitation of large
shared memory cache-
coherent machine

• Typical HPC nodes have
64/128 GB memory while
increasing trend to 1TB+
RAM machines

Efficient use of I/O
bandwidth

• Overlap of I/O and
processing inside an
application difficult to
arrange

• Many simultaneous tasks
allow a queue of I/O
requests to built up

Tasks

Tasks
1. Take arguments and produce a

result

2. Can decompose into further tasks

M. J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Trans. Computers, vol. 21, no. 9, pp. 948–960, Sep. 1972.

What is the minimum
constraint on ordering
on tasks? How do we
avoid over-specifying
this ?

Tasks
1. Take arguments and produce a

result

2. Can decompose into further tasks

M. J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Trans. Computers, vol. 21, no. 9, pp. 948–960, Sep. 1972.

Does (lexical & run-
time) program
structure correspond to
tasks?

Does the structure of
program map well to
(relatively few) high-level
tasks?

Von Neumann
Model

V

Instruction == Task

Ordering == Program Counter

INPUT OUTPUT

MEMORY

MAR MDR

CONTROL UNIT

PC IR

PROCESSING UNIT

TEMPALU

Tasks
Precedence definition

𝑥 : Input data

𝜏 : Input control variable, i.e., 𝑥 valid for use in computation?

𝑦 : Task result

𝜏∗ : Output control variable, i.e., is 𝑦 valid?

𝑓𝑖
𝑙 𝑥, 𝜏 → (𝑦, 𝜏∗)

QCD: domain decomposition &
fine grain global iteration

From Ukawa 2014:
https://indico.cern.ch/event/284433/contributions/1634880/attachments/525606/724848/ukawa.pdf

QCD: domain decomposition &
fine grain global iteration

From Ukawa 2014:
https://indico.cern.ch/event/284433/contributions/1634880/attachments/525606/724848/ukawa.pdf

https://www.flickr.com/photos/35734278@N05/3323018571 ,
BlueGene/P Argonne National Lab

https://www.flickr.com/photos/35734278@N05/3323018571

AIPS++ vs CASA
“TOOLS”: AN OBJECT ORIENTED USER
INTERFACE

“TASKS”: A TASK-BASED INTERFACE

CASA Script and equivalent task
graph

Architecture

Drivers
Modular, readable, source code structure. Small increment from standard CASA usage

Short development time, low maintenance

Easy to use on standard HPC clusters and single nodes

Reasonable performance and scalability

SWIFT/T
LANGUAGE

Functional language with only I-Structure
variables

◦ Every (lexical) variable can only be assigned to at
most once

◦ This enables a compile time and run-time exact
dataflow inference

First class support for files and arrays

Simple, familiar looking, syntax (not Haskell!)

Simple but adequate type system

EXECUTION ENGINE (TURBINE)

Designed for HPC clusters with a shared
filesystem (Lustre/GPFS) and MPI-3 libraries

High task issue rate

Fully dynamical load-balancing

Capability for in-process tasks (including
CASA!)

◦ No overhead of starting a process for each task

Integrates with cluster schedulers (SLURM,
etc). Works out of box on typical cluster.

See Wilde (2011) for the SWIFT language; See Wozniak (2013) for description of SWIFT/T

Module Architecture (simplified)

IB Verbs

MPI (v3) LUSTRE

ADLIB

TURBINE

CASACore/CASA C++

CASA/SWIFT Application / User Script

CASA Python layer

JAVA RunTime

SWIFT/T CompilerFFTW, C++ STD Lib

Key:
Unmodified
off-the shelf

Modified off-
the shelf

Custom

RUN TIME ARCHITECTURE
(COMPONENTS)

LUSTRE

ADLIB Server
ADLIB Server

ADLIB Server

Worker
Worker

Worker
Worker

Worker

CASA

Python

Control

Drivers: Scalability, Load balancing, high task issue
rate, low task issue overhead

Get task

Put task

MPI one-sided
data send
(not supported
in CASA
currently)

Data exchange via shared file
system

CASA to SWIFT/T

SWIFT/T program and equivalent
graph

RESULTS

MAIN RESULTS

• Two weeks to full implementation (but I was already very familiar with
CASA & SWIFT/T)

• Minimal need for interaction with upstream developers

Short development cycle

• SWIFT if anything more understandable from scientific viewpoint than
the underlying Python

• Accurate, reliable, modularisations

Understandable program structure

Scalability

More information
Memo with the details full source code

Acknowledgement
H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement
number: 653477).

17/10/2017
ASTERICS-OBELICS WORKSHOP 2017 / BARCELONA

26

