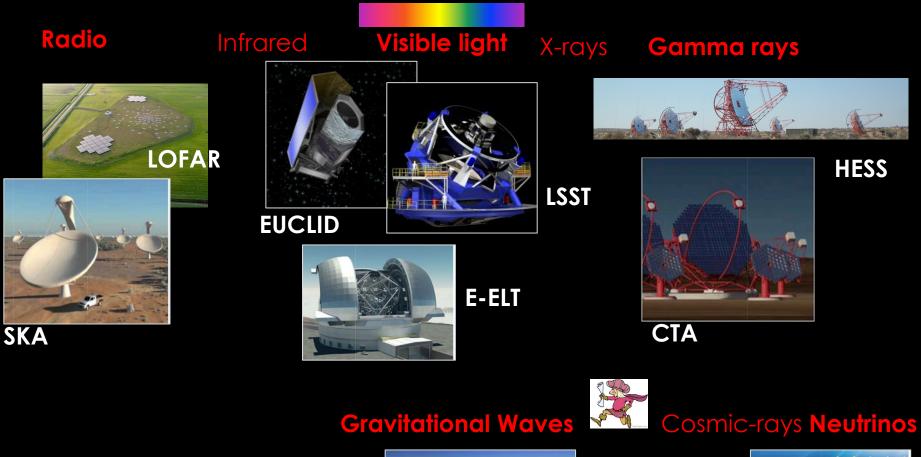


Astronomy ESFRI & Research Infrastructure Cluster ASTERICS - 653477

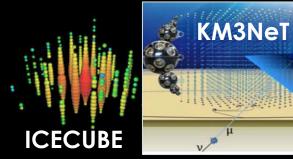
OBELICS (OBservatory E-environments LInked by common ChallengeS)

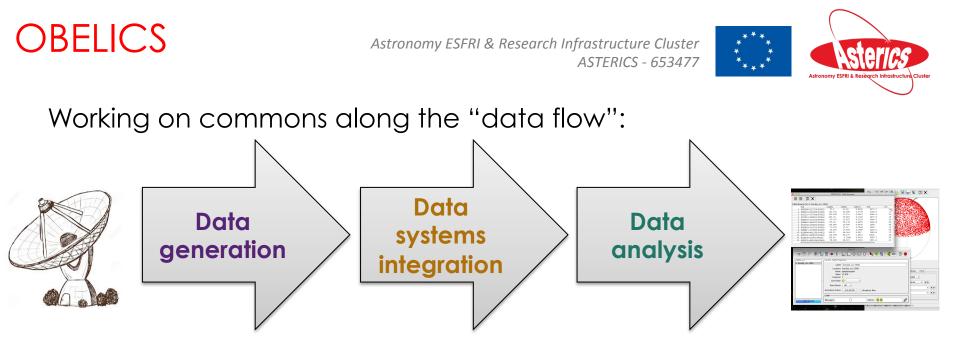
APF

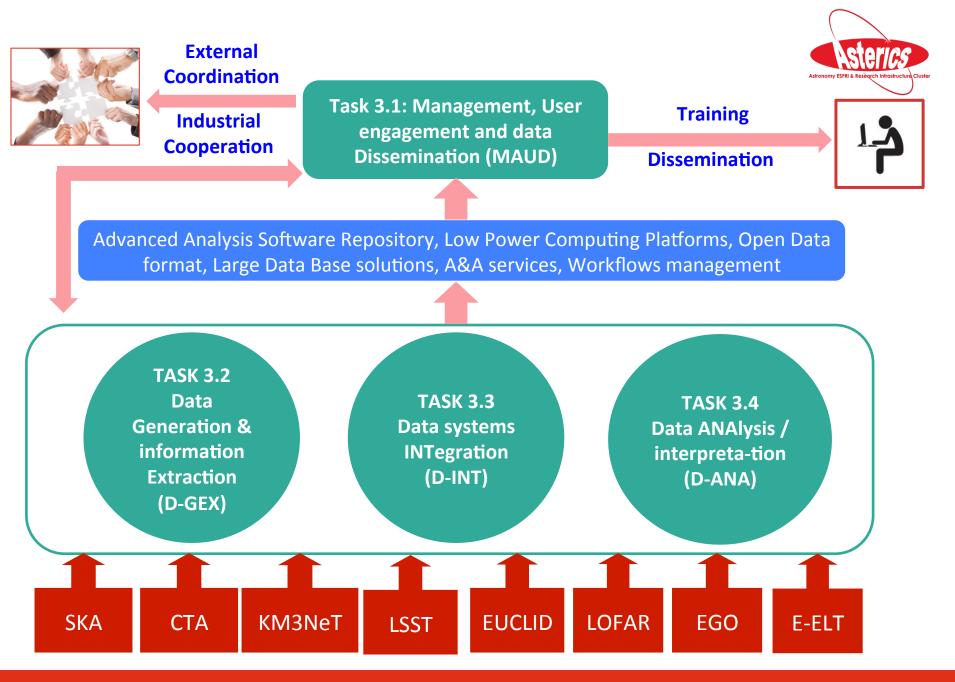
Nice, 17/01/2018


Giovanni Lamanna

OBELICS




- Targeting common ESFRI-projects « Data Challenges ».
 - Generate large volumes of data.
 - Need computing resources, intensive simulation and large storage space.
- Scopes:
 - Enable interoperability and software re-use.
 - Enable open standards and software libraries for multi-messenger data.
 - Develop common solutions, share prototypes, exchange experience.
- Objectives:
 - Create an open innovation environment across ESFRI facilities.
- Expected impact:
 - Economies of scale and saving resources.
 - Contribute to the construction and operation of ESFRI projects.



Twelve international partners cooperating around three main steps of data pipelines of major ESFRI projects in Astronomy.

Different probes/methods/specifications

Projects	Processing	Main requirements/challenges
EVENT-BASED (γ-rays, CR, ν) <u>CTA, KM3Net</u>	Evt-builder, calib. and reconstruction; reduction, real-time science.	Raw big-data (storage & HTC centres). Data formats. Algorithms. On-site operation and reduction. Cooperative science tools. Observatory (A&A). Multi-λ.
IMAGE-BASED (far-IR, VIS)	Surveys/deep observation; combining	Big-data products: data base challenges. Graphical processing,
<u>EUCLID, LSST</u>	photometer and spectrograph info.; Catalogue of objects.	Algorithms. Images format. Catalogue preservation and query. HTC centres.
SIGNAL-BASED (Radio, GW) <u>SKA, LIGO-Virgo</u>	Noise cleaning; mathematical processing (FT) converting signal in images.	Algorithms. New computing architectures. HPC and HTC combined. Fast soft reduction. Data mining and preservation.

APF, NICE 17/1/2018

G. Lamanna

OBELICS & multi- λ

Four fields where OBELICS scopes can have links with multi- λ policy

- 1) multi- λ as a potential source of fragmentation and where OBELICS helps proposing shared (digital) solutions.
- 2) multi- λ as an implication of openness; OBELICS builds a framework for open-source solutions for data archive, access and analysis in a big-data context (multi-RI scheduler; simulations and modelling).
- 3) multi- λ as a severe time constraint for efficient follow-up analysis. OBELICS produces transversal HPC programming solutions for fast data calibration, compression, transfer and reconstruction + ML ...
- 4) multi-λ as a motivation for: i) data quality assurance for which RIs are the unique subjects; ii) innovation in digital standards and digital infrastructures (archive); iii) large "community" adoption of programme languages and methods for workflows and visualisation.

Three sub-domains to leverage final OBELICS expected achievements and to build an "Open Data multi-lambda and cross-domain research environment".

1) Data sharing

- Solutions for heterogeneous and interoperable regional/ national computing and data resources ...
- Open-source software repository. Sharing and codeveloping scientific software is critical. Provision of open science tools; services for multi-wavelength quasi-real-time follow-up analysis; modelling and simulations ...

2) Data access

- "Open Access and user-support" (for data and software) Ex.: A "portal" implementing the access to data to combine and to analyse it, visualise the results and implement new workflows.
- -> Policy for sharing to be subscribed by the RIs

3) Data re-use

• Preservation solutions (for data, software and framework) and long-term sustainability.

[...]

Conclusions or last considerations:

- New Rls are: Big Data generators, precision measurements, and plethora of results expected in the future.

- New needs and expectations from next generation researchers.

- Policy, community networking, computing infrastructures, scientific software and data services are multi-layers for the implementation of a multi-messenger strategy for the future.