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The Standard Model in Action 5
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What are we missing?

• Is the Higgs boson connected to New Physics?

• Why Gravity so much weaker then the other forces?

• What are Dark Matter and Dark Energy?

• What gives neutrinos their mass?

• Why is there a matter /anti-matter asymmetry?

• …

• New forces and heavy particles may have been active during the 
early universe that explain these phenomena

• We can look for them in high energy physics experiments!

• How can machine learning help?

6



The Large Hadron Collider at CERN

I work here

Swiss Alps
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The ATLAS Experiment

Size:
46 m long, 
25 m high, 
25 m wide

Data:
~300 MB / sec
~3000  TB / year

Weight:
7000 tons
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~108 detector channels
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Studying Collisions 10



Studying Collisions 11

• Causal and Compositional Structure

Collision → particle X → “final state” particles → detector data
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Studying Collisions 13
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Studying Collisions 15
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Studying Collisions 16
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Studying Collisions 17

• With a collection of  collisions we can perform:
– Hypothesis testing: new particle present?

– Measurement: Inference of  latent parameters, e.g. Higgs mass

• Extremely accurate simulations + knowledge of  the data 
generating process (i.e. physics) to analyze our data! 



From Theory to Experiment 18

O(10) particles O(100) particles O(108) detector elements



From Theory to Experiment 19
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Event 
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From Theory to Experiment 20

Detector dataReconstruction of 
particles

Event 
Reconstruction 
and Selection

Hypothesis 
testing / 

Measurement

O(10) particles O(100) particles O(108) detector elements

• Build on our knowledge of  how the data is created
– Use our simulation to design and study reconstruction algorithms, and to 

compare predictions with our experimental data

• Use Machine learning to improve (or rethink) the steps of  this process?



Machine Learning Applied Widely in HEP
• In analysis:

– Classifying signal from background, especially 
in complex final states

– Reconstructing heavy particles and improving 
the energy / mass resolution

• In reconstruction:
– Improving detector level inputs to 

reconstruction 
– Particle identification tasks
– Energy / direction calibration

• In the trigger:
– Quickly identifying complex final states

• In computing:
– Estimating dataset popularity, and determining 

needed number and location of  dataset replicas

21

JHEP 01 (2016) 064 

JINST 10 P08010 2015

arXiv:1512.05955



Deep Learning for HEP

• How do we move deep 
learning advancements 
into HEP?

– Translate problems in HEP 
into problems in ML 
domain

– Incorporate HEP domain 
knowledge when building 
models

– How do we extract what is 
learned?

22

http://www.asimovinstitute.org/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo/
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Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely

– 4 –
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Boson jet QCD jet

• Can use internal structure of  a jet for classification
– Also known as Jet Substructure

• A wealth of  domain expertise has gone in feature 
engineering

• Can deep learning perform this classification?
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h, W, Z

q

q
QCD:
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Jet Images 26

Unrolled slice of detector

Calorimeter towers as pixels
Energy depositions as intensity

B. Nachman: 
https://indico.cern.ch/event/567550/contributions/2656471/

https://indico.cern.ch/event/567550/contributions/2656471/


Jet Images 27

B. Nachman: 
https://indico.cern.ch/event/567550/contributions/2656471/

Average of large number of Jet Images

W-jets

QCD-jets

https://indico.cern.ch/event/567550/contributions/2656471/
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

3xFC logistic

3x

Jet-image based developments
P. Baldi et al. 1603.09349 (W-tagging) 
J. Barnard et al. 1609.00607 (W-tagging) 
P. Komiske et al. 1612.01551 (q/g-tagging) 
L. de Oliveira et. al. 1701.05927 (jet-image GAN)
G. Kasieczka et al. 1701.08784 (top-tagging) arXiv:1511.05190
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Signal Efficiency
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Learning about learning

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Advantage of CNN is that we can visualize the filters
Filters Filters convolved with images

Average of most activating jets for a given neural

Additional radiation in QCD jets

signal-like
background-like

Soft QCD gluon 
emission

arXiv:1511:05190



Beyond Images: New representations, models, and 
applications for deep learning in jet physics 31

{ p1 ,    p2 ,     p3 ,    p4 ,     p5 ,    p6 ,     p7 ,    p8 }     

Jet

Jet sequence

Jet Binary Tree

Jet Graph

Naïve Bayes

Recurrent NN

Recursive NN

Graph NN, 
Message Passing NN

Gradient of NN output
w.r.t node activation

ATL-PHYS-PUB-2017-003

arXiv:1702.00748

I. Henrion et. al. , presented at NIPS workshop on deep learning for physics sciences
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Generative Adversarial Networks (GAN)

• Full Simulation: accurate simulation of  particle interactions with material
– Computationally very costly
– Only produce sample, can’t compute analytically P(energy deposits | particle)

• Fast Simulation: simplified parametric model of  energy deposits

• Generative models to learn data distribution, p(x), and produce samples?
– Generative Adversarial Networks (GAN)
– Variational Auto-Encoders (VAE)

33



GANs 34

Generator
CNN

Discriminator
CNN

Random
Noise

“Real” data

Real or Fake?

Images: arXiv:1710.10196

• Generator produces images from random noise and tries to trick discriminator 
into thinking they are real

• Classifier tries to tell the difference between real and fake images  

arXiv:1406.2661



GANs for HEP

• GANs and VAEs being studied for generating Jet-images, and 3D calorimeter 
energy depositions in toy simulation and at the LHC experiments!

35
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Deep Learning in the Pipeline 36

Experiment
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Raw data to final 
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Event 
Reconstruction 
and Selection

Infer properties of collision
Classification of interesting collisions

Hypothesis 
testing / 

Measurement

Latent parameter
estimation

• Developing new ways to train our algorithms. Examples:
– Parametrized learning [EPJ C76 (2016) no.5, 235]
– Adversarial learning to pivot [NIPS 2017, 1611.01046]
– Learning from label proportions [1702.00414]

Can apply broadly



Dealing with Systematic Uncertainties
• Systematic uncertainties encapsulate our incomplete 

knowledge of  physical processes and  detectors

• Can we teach a classifier to be robust to these kinds of  
uncertainties?

37

arXiv:1609.00607



Adversarial Networks

• Classifier built to solve problem at hand

38
G. Louppe, M. K., K. Cranmer, 
arXiv:1611.01046 



Adversarial Networks 39

• Systematic uncertainty encoded as nuisance parameters, Z

• Adversary to predict the value of  Z given classifier output

G. Louppe, M. K., K. Cranmer, 
arXiv:1611.01046 



Adversarial Networks

• Loss encodes performance of  classifier and adversary
– Classifier penalized when adversary does well at predicting Z

• Hyper-parameter l controls trade-off
– Large l enforces f(…) to be pivotal, e.g. robust to nuisance
– Small l allows f(…) to be more optimal

40
G. Louppe, M. K., K. Cranmer, 
arXiv:1611.01046 



Learning to Pivot: Physics Example 41

Optimal tradeoff of 
performance vs. robustness

Non-Adversarial training

G. Louppe, M. K., K. Cranmer, 
arXiv:1611.01046 

• l=0, Z=0
– Standard training with no 

systematics during training, 
evaluate systematics after 
training

• l=0
– Training samples include 

events with systematic 
variations, but no adversary 
used

• l=10
– Trading accuracy for 

robustness results in net 
gain in terms of  statistical 
significance

[AMS = Estimate of statistical significance including systematic uncertainty]

W-jets vs. QCD-jets
Z = noise level from “pileup”
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Directions in DL in HEP 43

• Better understanding how to use computer vision and natural 
language processing techniques

• Thinking about new data structures, like trees and graphs, 
that can be analyzed with Deep Learning 

arXiv:1707.08600 arXiv:1702.00748
I. Henrion et. al. ,  presented at NIPS workshop on 
deep learning for physics sciences

arXiv:1803:08066



Directions in DL in HEP 44

• Better understanding how to use computer vision and natural 
language processing techniques

• Thinking about new data structures, like trees and graphs, 
that can be analyzed with Deep Learning 

• Can ML help with our most computationally costly problems, 
like simulation or the combinatorial challenge of  tracking?
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Directions in DL in HEP 45

• Better understanding how to use computer vision and natural 
language processing techniques

• Thinking about new data structures, like trees and graphs, 
that can be analyzed with Deep Learning 

• Can ML help with our most computationally costly problems, 
like simulation or the combinatorial challenge of  tracking?

• Can fast O(ns-µs) NN inference be done with FPGAs to put 
ML early in the trigger / data acquisition process?

arXiv:1804.06913Image from:
https://indico.cern.ch/event/714134/contributions/2960185/attachments/1640629/2620365/20180426_hls4ml_kreis.pdf

https://indico.cern.ch/event/714134/contributions/2960185/attachments/1640629/2620365/20180426_hls4ml_kreis.pdf


Directions in DL in HEP 46

• Better understanding how to use computer vision and natural 
language processing techniques

• Thinking about new data structures, like trees and graphs, 
that can be analyzed with Deep Learning 

• Can ML help with our most computationally costly problems, 
like simulation or the combinatorial challenge of  tracking?

• Can fast O(ns-µs) NN inference be done with FPGAs to put 
ML early in the trigger / data acquisition process?

• Can we design better architectures and training algorithms 
to tackle our HEP challenges?

• How can we make best use of  our simulation for inference 
without the PDF, i.e. Likelihood Free Inference?



Conclusion

• Just touched the surface of  the rapid progress in 
Machine Learning in HEP

• Deep learning application developing quickly in 
High Energy Physics, across the whole data 
acquisition, simulations, and analysis pipeline

• Many new developments and performance 
improvements driven by thinking about HEP 
challenges in completely new ways

47
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Pipeline 50

Experiment
Data Collection

Simulation of 
physics + detector

Generative Model

Reconstruction
Raw data to final 

state paticles

Cluster energy depositions
Classify clusters as particles
Infer / regress properties

Event 
Reconstruction 
and Selection

Infer properties of collision
Classification of interesting collisions

Hypothesis 
testing / 

Measurement

Latent parameter
estimation

• Build on our knowledge of  how the data is created
– Use our simulation to design and study reconstruction algorithms, and to 

compare predictions with our experimental data

• Use Machine learning to improve (or rethink) the steps of  this process?



Simulation 51
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Reconstructing Particles 52

Calorimeter:
Stops particle and
destructively measure
energy / direction

Tracking detector:
Typically Si-pixel detector
Non-destructive space-point
measurement

• Particle identification = 
Classification 

• Energy estimation = 
Inference, regression

p(electron | data)

p(Eelectron

true

| electron data)



Understanding Clusters of  Particles: Jets 53

• Jet identification = 
Classification 

• Energy estimation = 
Inference, regression

! !"#$%& !"#&'()$ *$& ()+,&$#)

! ./01232/ *$& ()+,&$#)

• Jet: stream of  particles 
produced by high energy 
quarks and gluons
– Clustering algorithms used to 

find them



Analyzing Events and Hypothesis Testing 54

� =

Y

x2D

p(x|background)
p(x|signal+background)

Phys. Lett. B 726 (2013)

Is there a Higgs?
What is the Higgs mass?

JHEP 01 (2016) 064 

Hypothesis Testing and Parameter Estimation

Analyzing Events

Signal vs                        background



Decorrelating Variables

• Same adversarial setup can decorrelate a classifier from a 
chosen variable (rather than nuisance parameter)

• In this example, decorrelate classifier from jet mass, so as 
not to sculpt jet mass distribution with classifier cut

55arXiv:1703.03507



Deep Learning in the Pipeline 56

Experiment
Data Collection

Simulation of 
physics + detector

Generative Model

Reconstruction
Raw data to final 

state paticles

Cluster energy depositions
Classify clusters as particles
Infer / regress properties

Event 
Reconstruction 
and Selection

Infer properties of collision
Classification of interesting collisions

Hypothesis 
testing / 

Measurement

Latent parameter
estimation



Neutrino Identification at NOnA

• Two 2D projections of  the interactions

• Goal: discriminate between different 
neutrino interactions / backgrounds

57arXiv:1604.01444



Neutrino Identification at NOnA

• Two 2D projections of  the interactions

• Goal: discriminate between different 
neutrino interactions / backgrounds

• Make use of  powerful computer vision 
architectures, here GoogLeNet, and 
adapt to our challenges

58arXiv:1604.01444



Neutrino Identification at NOnA

• Convolution filters and outputs show interesting features about how 
the NN is providing discrimination

• Major gains over current algorithms in ne-CC discrimination:
35% → 49% signal efficiency for the same background rejection

59

Image Y-view First CONV layer filters Output of convolution
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